Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Sports Med ; 53(8): 1641-1649, 2023 08.
Article in English | MEDLINE | ID: mdl-36972014

ABSTRACT

BACKGROUND: Mixed martial arts (MMA) fighters, due to exposure to repetitive head impacts, are at risk for brain atrophy and neurodegenerative sequelae. Simultaneously, motor skills training and cognition-rich activities have been linked with larger regional brain volumes. The majority of an MMA fighter's sporting activity occurs during practice (e.g., sparring) rather than formal competition. This study, therefore, aims to be the first to explore regional brain volumes associated with sparring in MMA fighters. METHODS: Ninety-four active, professional MMA fighters from the Professional Fighters Brain Health Study met inclusion criteria for this cross-sectional analysis. Adjusted multivariable regression analyses were utilized to examine the relationship between the number of sparring practice rounds per week during typical training and a select number of regional brain volumes (i.e., caudate, thalamus, putamen, hippocampus, amygdala). RESULTS: A higher number of weekly sparring rounds during training was significantly associated with larger left (beta = 13.5 µL/round, 95% CI 2.26-24.8) and right (beta = 14.9 µL/round, 95% CI 3.64-26.2) caudate volumes. Sparring was not significantly associated with left or right thalamus, putamen, hippocampus, or amygdala volumes. CONCLUSIONS: More weekly rounds of sparring was not significantly associated with smaller volumes in any of the brain regions studied in active, professional MMA fighters. Sparring's significant association with larger caudate volume raises questions about whether fighters who spar more experience attenuated trauma-related decreases in caudate volume relative to fighters who spar less, whether fighters who spar more experience minimal or even positive changes to caudate volume, whether baseline differences in caudate size may have mediated results, or whether some other mechanism may be at play. Given limitations inherent to the cross-sectional study design, more research is needed to further explore the brain effects of sparring in MMA.


Subject(s)
Brain , Martial Arts , Humans , Cross-Sectional Studies , Cognition
2.
Int Rev Psychiatry ; 32(1): 89-95, 2020 02.
Article in English | MEDLINE | ID: mdl-31587599

ABSTRACT

It has long been established that fighting sports such as boxing and mixed martial arts can lead to head injury. Prior work from this group on the Professional Fighters Brain Health Study found that exposure to repetitive head impacts is associated with lower brain volumes and decreased processing speed in fighters. Current and previously licensed professional fighters were recruited, divided into active and retired cohorts, and matched with a control group that had no prior experience in sports with likely head trauma. This study examined the relationship between age of first exposure (AFE) to fighting sports and brain structure (MRI regional volume), cognitive performance (CNS Vital Signs, iComet C3), and clinical neuropsychiatric symptoms (PHQ-9, Barratt Impulsiveness Scale). Brain MRI data showed significant correlations between earlier AFE and smaller bilateral hippocampal and posterior corpus callosum volumes for both retired and active fighters. Earlier AFE in active fighters was correlated with decreased processing speed and decreased psychomotor speed. Retired fighters showed a correlation between earlier AFE and higher measures of depression and impulsivity. Overall, the results help to inform clinicians, governing bodies, parents, and athletes of the risks associated with beginning to compete in fighting sports at a young age.


Subject(s)
Athletic Injuries , Behavioral Symptoms , Boxing/injuries , Brain Injuries , Cognitive Dysfunction , Corpus Callosum , Depression , Hippocampus , Martial Arts/injuries , Adult , Age Factors , Athletic Injuries/complications , Athletic Injuries/pathology , Athletic Injuries/physiopathology , Behavioral Symptoms/etiology , Behavioral Symptoms/pathology , Behavioral Symptoms/physiopathology , Brain Injuries/complications , Brain Injuries/pathology , Brain Injuries/physiopathology , Cognitive Dysfunction/etiology , Cognitive Dysfunction/pathology , Cognitive Dysfunction/physiopathology , Corpus Callosum/pathology , Depression/etiology , Depression/pathology , Depression/physiopathology , Hippocampus/pathology , Humans , Impulsive Behavior/physiology , Male , Middle Aged , Retirement
SELECTION OF CITATIONS
SEARCH DETAIL