Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
1.
Phytother Res ; 38(3): 1400-1461, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38232725

ABSTRACT

Neuropsychiatric disorders are anticipated to be a leading health concern in the near future, emphasizing an outstanding need for the development of new effective therapeutics to treat them. Stilbenes, with resveratrol attracting the most attention, are an example of multi-target compounds with promising therapeutic potential for a broad array of neuropsychiatric and neurological conditions. This review is a comprehensive summary of the current state of research on stilbenes in several neuropsychiatric and neurological disorders such as depression, anxiety, schizophrenia, autism spectrum disorders, epilepsy, traumatic brain injury, and neurodegenerative disorders. We describe and discuss the results of both in vitro and in vivo studies. The majority of studies concentrate on resveratrol, with limited findings exploring other stilbenes such as pterostilbene, piceatannol, polydatin, tetrahydroxystilbene glucoside, or synthetic resveratrol derivatives. Overall, although extensive preclinical studies show the potential benefits of stilbenes in various central nervous system disorders, clinical evidence on their therapeutic efficacy is largely missing.


Subject(s)
Brain Injuries, Traumatic , Neurodegenerative Diseases , Stilbenes , Humans , Resveratrol , Neurodegenerative Diseases/drug therapy , Brain Injuries, Traumatic/drug therapy
2.
Analyst ; 148(19): 4688-4697, 2023 Sep 25.
Article in English | MEDLINE | ID: mdl-37602722

ABSTRACT

Two electrochemical sensors are proposed here for the first time for the fast screening of cannabinoids in Cannabis sativa L. plant material (inflorescences). The accurate control of cannabinoid content is important for discriminating between recreational, i.e. illegal, and fibre-type C. sativa samples, which differ mainly according to the amount of Δ9-tetrahydrocannabinol (Δ9-THC) and Δ9-tetrahydrocannabinolic acid (Δ9-THCA). Two screen printed electrodes obtained using different electrode materials were tested for the analysis of extracts from recreational and fibre-type C. sativa and their performance was compared with a consolidated method based on high-performance liquid chromatography (HPLC). The voltammetric responses recorded in the different samples reflected the compositional differences of the recreational and fibre-type extracts in accordance with the results of HPLC analyses. Moreover, the quantification of Δ9-THCA and the total cannabinoid content on the basis of the intensity of the peaks of the voltammograms was possible through a simple and fast electrochemical procedure.


Subject(s)
Cannabinoids , Cannabis , Cannabinoids/analysis , Cannabis/chemistry , Dronabinol/analysis , Plant Extracts/chemistry
3.
Phytother Res ; 37(5): 1924-1937, 2023 May.
Article in English | MEDLINE | ID: mdl-36583304

ABSTRACT

Neuropathic pain (NP) is a chronic disease that affects the normal quality of life of patients. To date, the therapies available are only symptomatic and they are unable to reduce the progression of the disease. Many studies reported the efficacy of Cannabis sativa L. (C. sativa) on NP, but no Δ9 -tetrahydrocannabinol (Δ9 -THC)-free extracts have been investigated in detail for this activity so far. The principal aim of this work is to investigate the potential pain-relieving effect of innovative cannabidiol-rich non-psychotropic C. sativa oils, with a high content of terpenes (K2), compared to the same extract devoid of terpenes (K1). Oral administration of K2 (25 mg kg-1 ) induced a rapid and long-lasting relief of pain hypersensitivity in a mice model of peripheral neuropathy. In spinal cord samples, K2 reduced mitogen-activated protein kinase (MAPKs) levels and neuroinflammatory factors. These effects were reverted by the administration of a CB2 antagonist (AM630), but not by a CB1 antagonist (AM251). Conversely, K1 showed a lower efficacy in the absence of CB1/CB2-mediated mechanisms. In LPS-stimulated murine microglial cells (BV2), K2 reduced microglia pro-inflammatory phenotype through the downregulation of histone deacetylase 1 (HDAC-1) and nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor (IKBα) and increased interleukin-10 (IL-10) expression, an important antiinflammatory cytokine. In conclusion, these results suggested that K2 oral administration attenuated NP symptoms by reducing spinal neuroinflammation and underline the important role of the synergism between cannabinoids and terpenes.


Subject(s)
Cannabidiol , Cannabis , Neuralgia , Receptor, Cannabinoid, CB2 , Animals , Mice , Cannabidiol/pharmacology , Cannabis/chemistry , Microglia , Neuralgia/drug therapy , Neuroinflammatory Diseases , Oils , Quality of Life , Receptor, Cannabinoid, CB2/drug effects , Receptor, Cannabinoid, CB2/metabolism
4.
J Pharm Biomed Anal ; 221: 115037, 2022 Nov 30.
Article in English | MEDLINE | ID: mdl-36148721

ABSTRACT

The scientific interest in Cannabis sativa L. analysis has been rapidly increasing in recent years, especially for what concerns cannabinoids, plant secondary metabolites which are well known for having many biological properties. High-performance liquid chromatography (HPLC) is frequently used for both the qualitative and quantitative analysis of cannabinoids in plant extracts from C. sativa and its derived products. Many studies have been focused on the main cannabinoids, such as ∆9-tetrahydrocannabinolic acid (∆9-THCA), cannabidiolic acid (CBDA), cannabigerolic acid (CBGA) and their decarboxylated derivatives, such as ∆9-tetrahydrocannabinol (∆9-THC), cannabidiol (CBD) and cannabigerol (CBG). In addition to the abovementioned compounds, the plant produces other metabolites of the same chemical class, and some of them have shown interesting biological activities. In the light of this, it is important to have efficient analytical methods for the simultaneous separation of cannabinoids, which is quite complex since they present similar chemical-physical characteristics. The present work is focused on the use of the Design of Experiments technique (DoE) to develop and optimise an HPLC method for the simultaneous separation of 14 cannabinoids. Experimental design optimisation was applied by using a Central Composite Face-Centered design to achieve the best resolution with minimum experimental trials. Five significant variables affecting the chromatographic separation, including ammonium formate concentration, gradient elution, run time and flow rate, were studied. A multivariate strategy, based on Principal Component Analysis (PCA) and Partial Least Squared (PLS) regression, was used to define the best operative conditions. The developed method allowed for the separation of 12 out of 14 cannabinoids. Due to co-elution phenomena, HPLC coupled with a triple quadrupole mass analyser (HPLC-ESI-MS/MS) was applied, monitoring the specific transitions of each compound in the multiple reaction monitoring (MRM) mode. Finally, the optimised method was applied to C. sativa extracts having a different cannabinoid profile to demonstrate its efficiency to real samples. The methodology applied in this study can be useful for the separation of other cannabinoid mixtures, by means of appropriate optimisation of the experimental conditions.


Subject(s)
Cannabidiol , Cannabinoids , Cannabis , Cannabidiol/analysis , Cannabinoids/chemistry , Cannabis/chemistry , Chromatography, High Pressure Liquid/methods , Dronabinol , Plant Extracts/chemistry , Research Design , Tandem Mass Spectrometry/methods
5.
Phytother Res ; 36(2): 914-927, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35107862

ABSTRACT

In this study, extracts from non-psychoactive Cannabis sativa L. varieties were characterized by means of ultra high-performance liquid chromatography coupled with high-resolution mass spectrometry (UHPLC-HRMS) and their antiproliferative activity was assessed in vitro. The human chronic myelogenous leukaemia cell line K562 was chosen to investigate the mechanism of cell death. The effect on the cell cycle and cell death was analysed by flow cytometry. Proteins related to apoptosis were studied by western blotting. Mechanical properties of cells were assessed using the Micropipette Aspiration Technique (MAT). The results indicated that the cannabidiol (CBD)-rich extract inhibited cell proliferation of K562 cell line in a dose-dependent manner and induced apoptosis via caspase 3 and 7 activation. A significant decrease in the mitochondrial membrane potential was detected, together with the release of cytochrome c into the cytosol. The main apoptotic markers were not involved in the mechanism of cell death. The extract was also able to modify the mechanical properties of cells. Thus, this hemp extract and its pure component CBD deserve further investigation for a possible application against myeloproliferative diseases, also in association with other anticancer drugs.


Subject(s)
Cannabidiol , Cannabinoids , Cannabis , Leukemia, Myelogenous, Chronic, BCR-ABL Positive , Apoptosis , Cannabidiol/chemistry , Cannabidiol/pharmacology , Cannabinoids/pharmacology , Cannabis/chemistry , Humans , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Plant Extracts/chemistry , Plant Extracts/pharmacology
6.
J Pharm Biomed Anal ; 206: 114346, 2021 Nov 30.
Article in English | MEDLINE | ID: mdl-34537622

ABSTRACT

Cannabis sativa L. is a plant known all over the world, due to its history, bioactivity and also social impact. It is chemically complex with an astonishing ability in the biosynthesis of many secondary metabolites belonging to different chemical classes. Among them, cannabinoids are the most investigated ones, given their pharmacological relevance. In order to monitor the composition of the plant material and ensure the efficacy and safety of its derived products, extraction and analysis of cannabinoids play a crucial role. In this context, in addition to a conventional separation method based on HPLC with UV/DAD detection, a new strategy based on a non-separation procedure, such as 13C-qNMR, may offer several advantages, such as reduced solvent consumption and simultaneous acquisition of the quali/quantitative data related to many analytes. In the light of all the above, the aim of this work is to compare the efficiency of the above-mentioned analytical techniques for the study of the main cannabinoids in different samples of cannabis inflorescences, belonging to fibre-type, recreational and medical varieties. The 13C-qNMR method here proposed for the first time for the quantification of both psychoactive and non-psychoactive cannabinoids in different cannabis varieties provided reliable results in comparison to the more common and consolidated HPLC technique.


Subject(s)
Cannabinoids , Cannabis , Hallucinogens , Cannabinoids/analysis , Chromatography, High Pressure Liquid , Plant Extracts
7.
Nat Prod Res ; 35(24): 5888-5893, 2021 Dec.
Article in English | MEDLINE | ID: mdl-32748632

ABSTRACT

In this study, Thymus numidicus Poir. plant material was collected from two different locations in north-western Tunisia and the aerial parts essential oils (EOs) were extracted via hydro-distillation. Gas chromatography coupled to mass spectrometry (GC-MS) and flame ionisation detection (GC-FID) were used for the qualitative analysis and quantification of the volatile constituents. Thymol (50.1-52.8%) was identified as the main compound of both EOs. To evaluate the potential application of the EOs as antifungal agents, the in vitro inhibitory effects were tested against six fungal strains; a strong antifungal activity of one sample was observed (MIC = 40-400 µg/mL). The in vitro antiproliferative activity was investigated on two human cancer cell lines, i.e. the colonic (HCT116) and breast adenocarcinoma (MCF7) using the colourimetric MTT assay. Again, the same sample demonstrated to possess good antiproliferative activity against both cancer cell lines, with IC50 values of 26.9 and 11.7 µg/mL, respectively.


Subject(s)
Oils, Volatile , Thymus Plant , Antifungal Agents/pharmacology , Gas Chromatography-Mass Spectrometry , Humans , Microbial Sensitivity Tests , Oils, Volatile/pharmacology , Plant Oils/pharmacology , Thymol
8.
J Chromatogr A ; 1629: 461511, 2020 Oct 11.
Article in English | MEDLINE | ID: mdl-32896687

ABSTRACT

The scientific interest on the plant Cannabis sativa L., and in particular on its non-psychoactive or fibre-type variety (hemp), has been highly increasing in recent years, due to the pharmaceutical and nutraceutical potential of its bioactive compounds. This plant is indeed characterized by a very rich chemical composition, which encompasses different classes of constituents, such as cannabinoids and terpenes. In this context, the bioanalytical testing of hemp extracts can be difficult and time-consuming. Effect-directed analysis (EDA) by the combination of high-performance thin-layer chromatography (HPTLC) with biological and enzymatic assays represents one of the latest tools available for the rapid bioprofiling of complex matrices, such as plant extracts. In this ambit, the aim of this project was the non-targeted screening of inflorescence extracts from ten different hemp varieties for components exhibiting radical scavenging, antibacterial, enzyme inhibiting and estrogen-like effects. By HPTLC-EDA, the hemp samples exhibited strong antibacterial activities against both Gram-positive Bacillus subtilis and especially Gram-negative Aliivibrio fischeri bacteria, and also estrogen-like activity. They also inhibited α- and ß-glucosidase, tyrosinase and acetylcholinesterase. The characterization of two prominently multipotent bioactive compound zones was finally achieved by HPTLC-HRMS and preliminary assigned as cannabidiolic acid and cannabidivarinic acid.


Subject(s)
Cannabis/chemistry , Chromatography, Thin Layer/methods , Plant Extracts/analysis , Acetylcholinesterase/chemistry , Acetylcholinesterase/metabolism , Anti-Bacterial Agents/analysis , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Cannabinoids/analysis , Cannabis/metabolism , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/metabolism , Gram-Negative Bacteria/drug effects , Gram-Positive Bacteria/drug effects , Plant Extracts/chemistry
9.
J Pharm Biomed Anal ; 186: 113296, 2020 Jul 15.
Article in English | MEDLINE | ID: mdl-32334134

ABSTRACT

Cannabis-based medications are being increasingly used for the treatment of different clinical conditions. Among all galenic formulations, olive oil extracts from medical Cannabis are the most prescribed ones for their easy preparation and usage. A great variety of methods have been described so far for the extraction of medical Cannabis oils to reach a high yield of Δ9-tetrahydrocannabinol (Δ9-THC), but poor attention has been paid to the preservation of the terpene fraction from the plant, which may contribute to the overall bioactivity of the extracts. In this context, the present study was aimed at the chemical characterization of different medical Cannabis oils prepared by following both innovative and existing extraction protocols, with particular attention to cannabinoids and terpenes, in order to set up a suitable method to obtain an extract rich in these chemical classes. In particular, six different extraction procedures were followed, based on different techniques, of which all but one included a decarboxylation of the plant material. The profile of cannabinoids was studied in detail by means of HPLC-ESI-MS/MS, while terpenes were characterized by means both GC-MS and GC-FID techniques coupled with solid-phase microextraction operated in the head-space mode (HS-SPME). An innovative method that is based on the extraction of the oil by dynamic maceration at room temperature from plant inflorescences, which were partially decarboxylated in a closed system at a moderate temperature and partially pre-extracted with ethanol, produced similar yields of bioactive compounds as that obtained by using a microwave-assisted distillation of the essential oil from the plant material, in combination with a maceration extraction of the oil from the residue. Both these new methods provided a higher efficiency over already existing extraction procedures of medical Cannabis oils and they can be applied to obtain a product with a high therapeutic value.


Subject(s)
Cannabinoids/chemistry , Medical Marijuana/chemistry , Plant Oils/chemistry , Terpenes/chemistry , Cannabinoids/analysis , Chromatography, High Pressure Liquid , Dronabinol/analysis , Dronabinol/chemistry , Gas Chromatography-Mass Spectrometry , Medical Marijuana/administration & dosage , Oils, Volatile/analysis , Oils, Volatile/chemistry , Plant Oils/analysis , Solid Phase Microextraction , Spectrometry, Mass, Electrospray Ionization , Tandem Mass Spectrometry , Terpenes/analysis
10.
Molecules ; 24(12)2019 Jun 21.
Article in English | MEDLINE | ID: mdl-31234360

ABSTRACT

Volatile terpenes represent the largest group of Cannabis sativa L. components and they are responsible for its aromatic properties. Even if many studies on C. sativa have been focused on cannabinoids, which are terpenophenolics, little research has been carried out on its volatile terpenic compounds. In the light of all the above, the present work was aimed at the chemical characterization of seventeen essential oils from different fibre-type varieties of C. sativa (industrial hemp or hemp) by means of GC-MS and GC-FID techniques. In total, 71 compounds were identified, and the semi-quantitative analysis revealed that α- and ß-pinene, ß-myrcene and ß-caryophyllene are the major components in all the essential oils analysed. In addition, a GC-MS method was developed here for the first time, and it was applied to quantify cannabinoids in the essential oils. The antibacterial activity of hemp essential oils against some pathogenic and spoilage microorganisms isolated from food and food processing environment was also determined. The inhibitory effects of the essential oils were evaluated by both the agar well diffusion assay and the minimum inhibitory concentration (MIC) evaluation. By using the agar diffusion method and considering the zone of inhibition, it was possible to preliminarily verify the inhibitory activity on most of the examined strains. The results showed a good antibacterial activity of six hemp essential oils against the Gram-positive bacteria, thus suggesting that hemp essential oil can inhibit or reduce bacterial proliferation and it can be a valid support to reduce microorganism contamination, especially in the food processing field.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacteria/drug effects , Cannabis/chemistry , Oils, Volatile/pharmacology , Acyclic Monoterpenes , Anti-Bacterial Agents/chemistry , Bacteria/pathogenicity , Bicyclic Monoterpenes , Bridged Bicyclo Compounds/chemistry , Bridged Bicyclo Compounds/isolation & purification , Cannabinoids/chemistry , Gas Chromatography-Mass Spectrometry , Microbial Sensitivity Tests , Monoterpenes/chemistry , Monoterpenes/isolation & purification , Plant Extracts/chemistry , Plant Extracts/pharmacology , Polycyclic Sesquiterpenes , Sesquiterpenes/chemistry , Sesquiterpenes/isolation & purification , Terpenes/chemistry
11.
J Chromatogr A ; 1597: 179-186, 2019 Jul 19.
Article in English | MEDLINE | ID: mdl-31006529

ABSTRACT

Fibre-type Cannabis sativa L. (hemp) represents a valuable resource in many different fields, including both the pharmaceutical and food ones. This plant contains non-psychoactive cannabinoids, a class of bioactive compounds biosynthesized in both female and male inflorescences. Among them, cannabidiol (CBD) is the most interesting compound from a medicinal point of view. Indeed, several scientific studies have proved its therapeutic potential in a large number of pathologies, in addition to its biological effects attributable to its antioxidant, neuroprotective and anti-inflammatory properties. The analysis of the amount of cannabinoids in food and food supplements represents a critical issue in the ambit of both the quality assurance and the dietary intake control of these biologically active compounds. In this ambit, a particular attention is necessary for apiary products, since they are widely consumed and they can be produced by bees starting from different floral sources. In the light of all the above, the aim of this study was to develop for the first time a new analytical method based on RP-HPLC with ESI-MS/MS detection for the determination of CBD and related cannabinoids in honey. A quick, easy, cheap, effective, rugged and safe (QuEChERS) extraction procedure with an un-buffered method was selected and optimised as the more suitable protocol. As regards detection, it was carried out by using a linear ion trap quadrupole (QTRAP) mass analyser, operated in the multiple reaction monitoring (MRM) mode. Hemp male inflorescences and pollen were analysed in parallel by means of HPLC-UV/DAD, since bees can transfer pollen into their hives and, consequently, into beehive products. The method developed and validated for the first time in this work was finally applied to the analysis of cannabinoids in honey samples, thus demonstrating to be a useful tool for both quality control and safety assurance.


Subject(s)
Cannabinoids/analysis , Chromatography, High Pressure Liquid , Food Analysis/methods , Honey/analysis , Spectrometry, Mass, Electrospray Ionization , Animals , Bees , Cannabidiol/analysis , Cannabis/chemistry , Pollen/chemistry
12.
Molecules ; 24(6)2019 Mar 22.
Article in English | MEDLINE | ID: mdl-30909372

ABSTRACT

Cannabis sativa L. is a dioecious plant belonging to the Cannabaceae family. The discovery of the presence of many biologically-active metabolites (cannabinoids) in fibre-type Cannabis (hemp) has recently given rise to the valorisation of this variety. In this context, the present study was aimed at the multi-component analysis and determination of the main non-psychoactive cannabinoids (cannabidiol, cannabidiolic acid, cannabigerol and cannabigerolic acid) in female inflorescences of different hemp varieties by means of 13C quantitative nuclear magnetic resonance spectroscopy (qNMR). The method proposed here for the first time for the determination of cannabinoids provided reliable results in a competitive time with respect to the more consolidated HPLC technique. In fact, it gave sufficiently precise and sensitive results, with LOQ values lower than 750 µg/mL, which is easily achievable with concentrated extracts, without affecting the quality of 13C-qNMR spectra. In conclusion, this method can be considered as a promising and appropriate tool for the comprehensive chemical analysis of bioactive cannabinoids in hemp and other derived products in order to ensure their quality, efficacy and safety.


Subject(s)
Cannabis/chemistry , Carbon-13 Magnetic Resonance Spectroscopy , Plant Extracts/analysis , Plant Extracts/chemistry , Cannabidiol/analysis , Cannabidiol/chemistry , Cannabinoids/analysis , Cannabinoids/chemistry , Chromatography, High Pressure Liquid , Molecular Structure
13.
J Pharm Biomed Anal ; 166: 364-370, 2019 Mar 20.
Article in English | MEDLINE | ID: mdl-30708235

ABSTRACT

Aloysia polystachya (Griseb. et Moldenke) has not been deeply investigated in past years and currently data about its chemical composition are limited. Phenolic compounds characterization can be very difficult in vegetable matrices, owing to bonds to sugar moieties or conjugation, giving rise to complex structures. In this work, methanolic extracts of Aloysia polystachya leaves were analyzed by HPLC-ESI-MS, the favourite technique for the separation and quantification of their polyphenols. To assess the complete characterization and quantification of the phenylpropanoid fraction, three different MS techniques have been coupled to HPLC: ion trap mass spectrometry (Ion Trap LC/MS), quadrupole-time of flight high resolution mass spectrometry (Q-TOF HRMS) and triple-quadrupole (TQ LC/MS) for the quantification. Eleven phenylpropanoid glycosides were identified and quantified and, among them, the compounds forsythoside A, plantainoside C, purpureaside D, martynoside and its two isomers were detected for the first time to the best of our knowledge. The results presented here could be helpful to assess the quality of this plant and could further contribute to the chemotaxonomy of the genus.


Subject(s)
Glycosides/analysis , Plant Extracts/chemistry , Plant Leaves/chemistry , Polyphenols/analysis , Verbenaceae/chemistry , Chromatography, High Pressure Liquid , Glycosides/chemistry , Limit of Detection , Mass Spectrometry , Molecular Structure , Polyphenols/chemistry , Solid Phase Extraction
14.
Molecules ; 24(3)2019 Feb 11.
Article in English | MEDLINE | ID: mdl-30754712

ABSTRACT

The aqueous extract of dry onion skin waste from the 'Dorata di Parma' cultivar was tested as a new source of biomolecules for the production of colored and biofunctional wool yarns, through environmentally friendly dyeing procedures. Specific attention was paid to the antioxidant and UV protection properties of the resulting textiles. On the basis of spectrophotometric and mass spectrometry analyses, the obtained deep red-brown color was assigned to quercetin and its glycoside derivatives. The Folin⁻Ciocalteu method revealed good phenol uptakes on the wool fiber (higher than 27% for the textile after the first dyeing cycle), with respect to the original total content estimated in the water extract (78.50 ± 2.49 mg equivalent gallic acid/g onion skin). The manufactured materials showed remarkable antioxidant activity and ability to protect human skin against lipid peroxidation following UV radiation: 7.65 ± 1.43 (FRAP assay) and 13.60 (ORAC assay) mg equivalent trolox/g textile; lipid peroxidation inhibition up to 89.37%. This photoprotective and antioxidant activity were therefore ascribed to the polyphenol pool contained in the outer dried gold skins of onion. It is worth noting that citofluorimetric analysis demonstrated that the aqueous extract does not have a significative influence on cell viability, neither is capable of inducing a proapoptotic effect.


Subject(s)
Antioxidants/pharmacology , Onions/chemistry , Polyphenols/pharmacology , Radiation-Protective Agents/pharmacology , Skin/drug effects , Wool Fiber/analysis , Animals , Antioxidants/chemistry , Cell Survival , Gallic Acid , Glycosides/chemistry , Glycosides/pharmacology , Humans , Lipid Peroxidation/drug effects , Lipid Peroxidation/radiation effects , Mass Spectrometry , Mice , Plant Extracts/chemistry , Polyphenols/chemistry , Quercetin/analogs & derivatives , Quercetin/chemistry , RAW 264.7 Cells , Radiation-Protective Agents/chemistry , Skin/radiation effects , Spectrophotometry , Textile Industry
15.
J Pharm Biomed Anal ; 160: 443-477, 2018 Oct 25.
Article in English | MEDLINE | ID: mdl-30142565

ABSTRACT

Echinacea purpurea (L.) Moench, Echinacea angustifolia DC. var. angustifolia and Echinacea pallida (Nutt.) Nutt. are frequently used as medicinal plants and their preparations are among the most widely used herbal medicines. The extracts from these species have shown a highly complex chemical composition, including polar compounds (caffeic acid derivatives, CADs), non-polar compounds (alkylamides and acetylenic secondary metabolites; essential oil) and high molecular weight constituents (polysaccharides and glycoproteins). All these chemical classes of compounds have demonstrated to possess interesting biological activities. In the light of all the above, this paper is focused on the analytical techniques, including sample preparation tools and chromatographic procedures, for the chemical analysis of bioactive compounds in medicinally used Echinacea species. Since sample preparation is considered to be a crucial step in the development of analytical methods for the determination of constituents present in herbal preparations, the strength and weakness of different extraction techniques are discussed. As regards the analysis of compounds present in Echinacea plant material and derivatives, the application of different techniques, mainly HPLC, HPLC-ESI-MS, HPLC-ESI-MS/MS, HPCE, HPTLC and GC, is discussed in detail. The strength, weakness and applicability of the different separation tools are stated.


Subject(s)
Chemistry Techniques, Analytical/methods , Echinacea/chemistry , Phytochemicals/analysis , Plant Extracts/chemistry , Plant Roots/chemistry
16.
Anal Bioanal Chem ; 410(15): 3521-3531, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29350255

ABSTRACT

Humulus lupulus L. (hop) represents one of the most cultivated crops, it being a key ingredient in the brewing process. Many health-related properties have been described for hop extracts, making this plant gain more interest in the field of pharmaceutical and nutraceutical research. Among the analytical tools available for the phytochemical characterization of plant extracts, quantitative nuclear magnetic resonance (qNMR) represents a new and powerful technique. In this ambit, the present study was aimed at the development of a new, simple, and efficient qNMR method for the metabolite fingerprinting of bioactive compounds in hop cones, taking advantage of the novel ERETIC 2 tool. To the best of our knowledge, this is the first attempt to apply this method to complex matrices of natural origin, such as hop extracts. The qNMR method set up in this study was applied to the quantification of both prenylflavonoids and bitter acids in eight hop cultivars. The performance of this analytical method was compared with that of HPLC-UV/DAD, which represents the most frequently used technique in the field of natural product analysis. The quantitative data obtained for hop samples by means of the two aforementioned techniques highlighted that the amount of bioactive compounds was slightly higher when qNMR was applied, although the order of magnitude of the values was the same. The accuracy of qNMR was comparable to that of the chromatographic method, thus proving to be a reliable tool for the analysis of these secondary metabolites in hop extracts. Graphical abstract Graphical abstract related to the extraction and analytical methods applied in this work for the analysis of bioactive compounds in Humulus lupulus L. (hop) cones.


Subject(s)
Acids/analysis , Flavonoids/analysis , Humulus/chemistry , Plant Extracts/chemistry , Acids/metabolism , Chromatography, High Pressure Liquid/methods , Flavonoids/metabolism , Humulus/metabolism , Magnetic Resonance Spectroscopy/methods , Metabolome , Plant Extracts/metabolism , Secondary Metabolism
17.
Biomed Res Int ; 2018: 1691428, 2018.
Article in English | MEDLINE | ID: mdl-30627539

ABSTRACT

In the last decades, a lot of attention has been paid to the compounds present in medicinal Cannabis sativa L., such as Δ9-tetrahydrocannabinol (Δ9-THC) and cannabidiol (CBD), and their effects on inflammation and cancer-related pain. The National Cancer Institute (NCI) currently recognizes medicinal C. sativa as an effective treatment for providing relief in a number of symptoms associated with cancer, including pain, loss of appetite, nausea and vomiting, and anxiety. Several studies have described CBD as a multitarget molecule, acting as an adaptogen, and as a modulator, in different ways, depending on the type and location of disequilibrium both in the brain and in the body, mainly interacting with specific receptor proteins CB1 and CB2. CBD is present in both medicinal and fibre-type C. sativa plants, but, unlike Δ9-THC, it is completely nonpsychoactive. Fibre-type C. sativa (hemp) differs from medicinal C. sativa, since it contains only few levels of Δ9-THC and high levels of CBD and related nonpsychoactive compounds. In recent years, a number of preclinical researches have been focused on the role of CBD as an anticancer molecule, suggesting CBD (and CBD-like molecules present in the hemp extract) as a possible candidate for future clinical trials. CBD has been found to possess antioxidant activity in many studies, thus suggesting a possible role in the prevention of both neurodegenerative and cardiovascular diseases. In animal models, CBD has been shown to inhibit the progression of several cancer types. Moreover, it has been found that coadministration of CBD and Δ9-THC, followed by radiation therapy, causes an increase of autophagy and apoptosis in cancer cells. In addition, CBD is able to inhibit cell proliferation and to increase apoptosis in different types of cancer models. These activities seem to involve also alternative pathways, such as the interactions with TRPV and GRP55 receptor complexes. Moreover, the finding that the acidic precursor of CBD (cannabidiolic acid, CBDA) is able to inhibit the migration of breast cancer cells and to downregulate the proto-oncogene c-fos and the cyclooxygenase-2 (COX-2) highlights the possibility that CBDA might act on a common pathway of inflammation and cancer mechanisms, which might be responsible for its anticancer activity. In the light of all these findings, in this review we explore the effects and the molecular mechanisms of CBD on inflammation and cancer processes, highlighting also the role of minor cannabinoids and noncannabinoids constituents of Δ9-THC deprived hemp.


Subject(s)
Antioxidants/chemistry , Antioxidants/therapeutic use , Cannabinoids/chemistry , Cannabinoids/therapeutic use , Cannabis/chemistry , Oxidative Stress/drug effects , Animals , Humans , Proto-Oncogene Mas
18.
J Pharm Biomed Anal ; 146: 1-6, 2017 Nov 30.
Article in English | MEDLINE | ID: mdl-28841426

ABSTRACT

The genus Echinacea (Asteraceae) includes species traditionally used in phytotherapy. Among them, Echinacea pallida (Nutt.) Nutt. root extracts are characterized by a representative antiproliferative activity, due to the presence of acetylenic compounds. In this study, supercritical fluid extraction (SFE) was applied and compared with conventional Soxhlet extraction (SE) in order to obtain a bioactive extract highly rich in polyacetylenes and polyenes from E. pallida roots. The composition of the extracts was monitored by means of HPLC-UV/DAD and HPLC-ESI-MSn by using an Ascentis Express C18 column (150mm×3.0mm I.D., 2.7µm, Supelco, Bellefonte, PA, USA) with a mobile phase composed of (A) water and (B) acetonitrile, under gradient elution. By keeping SFE time at the threshold of 1h (15min static and 45min dynamic for 1 cycle) with the oven temperature set at 40-45°C and 90bar of pressure, an overall extraction yield of 1.18-1.21% (w/w) was obtained, with a high selectivity for not oxidized lipophilic compounds. The biological activity of the extracts was evaluated against human non-small lung A549 and breast carcinoma MCF-7 cancer cell lines. The cytotoxic effect of the SFE extract was more pronounced towards the MCF-7 than the A549 cancer cells, with IC50 values ranging from 21.01±2.89 to 31.11±2.l4µg/mL; cell viability was affected mainly between 24 and 48h of exposure. The results show the possibility of a new "green" approach to obtain extracts highly rich in genuine polyacetylenes and polyenes from E. pallida roots. The bioactivity evaluation confirmed the cytotoxicity of E. pallida extracts against the considered cancer cell lines, especially against MCF-7 cells, thus suggesting to represent a valuable tool for applicative purposes in cancer prevention.


Subject(s)
Echinacea/chemistry , Plant Extracts/chemistry , Plant Roots/chemistry , Polyenes/chemistry , Polyynes/chemistry , A549 Cells , Cell Line, Tumor , Cell Survival/drug effects , Humans , MCF-7 Cells , Phytotherapy/methods , Plant Extracts/pharmacology , Polyenes/pharmacology , Polyynes/pharmacology
19.
J Pharm Biomed Anal ; 143: 228-236, 2017 Sep 05.
Article in English | MEDLINE | ID: mdl-28609672

ABSTRACT

The present work was aimed at the development and validation of a new, efficient and reliable technique for the analysis of the main non-psychoactive cannabinoids in fibre-type Cannabis sativa L. (hemp) inflorescences belonging to different varieties. This study was designed to identify samples with a high content of bioactive compounds, with a view to underscoring the importance of quality control in derived products as well. Different extraction methods, including dynamic maceration (DM), ultrasound-assisted extraction (UAE), microwave-assisted extraction (MAE) and supercritical-fluid extraction (SFE) were applied and compared in order to obtain a high yield of the target analytes from hemp. Dynamic maceration for 45min with ethanol (EtOH) at room temperature proved to be the most suitable technique for the extraction of cannabinoids in hemp samples. The analysis of the target analytes in hemp extracts was carried out by developing a new reversed-phase high-performance liquid chromatography (HPLC) method coupled with diode array (UV/DAD) and electrospray ionization-mass spectrometry (ESI-MS) detection, by using an ion trap mass analyser. An Ascentis Express C18 column (150mm×3.0mm I.D., 2.7µm) was selected for the HPLC analysis, with a mobile phase composed of 0.1% formic acid in both water and acetonitrile, under gradient elution. The application of the fused-core technology allowed us to obtain a significant improvement of the HPLC performance compared with that of conventional particulate stationary phases, with a shorter analysis time and a remarkable reduction of solvent usage. The analytical method optimized in this study was fully validated to show compliance with international requirements. Furthermore, it was applied to the characterization of nine hemp samples and six hemp-based pharmaceutical products. As such, it was demonstrated to be a very useful tool for the analysis of cannabinoids in both the plant material and its derivatives for pharmaceutical and nutraceutical applications.


Subject(s)
Cannabis , Cannabinoids , Chromatography, High Pressure Liquid , Plant Extracts , Spectrometry, Mass, Electrospray Ionization
20.
J Pharm Biomed Anal ; 142: 28-34, 2017 Aug 05.
Article in English | MEDLINE | ID: mdl-28494336

ABSTRACT

Humulus lupulus L., commonly named hop, is well-known for its sedative and estrogenic activity. While hop cones are widely characterized, only few works have been carried out on the young shoots of this plant. In the light of this, the aim of this study was to identify for the first time the flavonoids present in young hop shoots and to compare the composition of samples harvested from different locations in Northern Italy with their antioxidant activity. The samples were extracted by means of dynamic maceration with methanol. The HPLC-UV/DAD, HPLC-ESI-MS and MS2 analysis were carried out by using an Ascentis C18 column (250×4.6mm I.D., 5µm), with a mobile phase composed of 0.1M formic acid in both water and acetonitrile, under gradient elution. Quercetin and kaempferol glycosides were the main compounds identified and quantified in hop shoot extracts. Total flavonols ranged from 2698±185 to 517±48µg/g (fresh weight). The antioxidant activity was determined by means of the radical scavenging activity assay against diphenylpicrylhydrazyl (DPPH) and by using a photochemiluscence assay with a Photochem® apparatus. The results showed that hop shoots represent a new source of flavonols; therefore, they can be useful for a possible incorporation in the diet as a functional food or applied in the nutraceutical ambit.


Subject(s)
Humulus , Antioxidants , Flavonoids , Flavonols , Italy , Plant Extracts , Plant Shoots
SELECTION OF CITATIONS
SEARCH DETAIL