Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Nutrients ; 13(7)2021 Jun 24.
Article in English | MEDLINE | ID: mdl-34202787

ABSTRACT

Neuroblastoma (NB) is the most common extra-cranial solid tumor of pediatric age. The prognosis for high-risk NB patients remains poor, and new treatment strategies are desirable. The olive leaf extract (OLE) is constituted by phenolic compounds, whose health beneficial effects were reported. Here, the anti-tumor effects of OLE were investigated in vitro on a panel of NB cell lines in terms of (i) reduction of cell viability; (ii) inhibition of cell proliferation through cell cycle arrest; (iii) induction of apoptosis; and (iv) inhibition of cell migration. Furthermore, cytotoxicity experiments, by combining OLE with the chemotherapeutic topotecan, were also performed. OLE reduced the cell viability of NB cells in a time- and dose-dependent manner in 2D and 3D models. NB cells exposed to OLE underwent inhibition of cell proliferation, which was characterized by an arrest of the cell cycle progression in G0/G1 phase and by the accumulation of cells in the sub-G0 phase, which is peculiar of apoptotic death. This was confirmed by a dose-dependent increase of Annexin V+ cells (peculiar of apoptosis) and upregulation of caspases 3 and 7 protein levels. Moreover, OLE inhibited the migration of NB cells. Finally, the anti-tumor efficacy of the chemotherapeutic topotecan, in terms of cell viability reduction, was greatly enhanced by its combination with OLE. In conclusion, OLE has anti-tumor activity against NB by inhibiting cell proliferation and migration and by inducing apoptosis.


Subject(s)
Antineoplastic Agents/pharmacology , Neuroblastoma/drug therapy , Olea , Plant Extracts/pharmacology , Plant Leaves/chemistry , Apoptosis/drug effects , Cell Cycle Checkpoints/drug effects , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Humans
2.
J Immunol Res ; 2018: 8097398, 2018.
Article in English | MEDLINE | ID: mdl-30510968

ABSTRACT

Neuroblastoma (NB) and malignant melanoma (MM), tumors of pediatric age and adulthood, respectively, share a common origin, both of them deriving from the neural crest cells. Although NB and MM have a different behavior, in respect to age of onset, primary tissue involvement and metastatic spread, the prognosis for high stage-affected patients is still poor, in spite of aggressive treatment strategies and the huge amount of new discovered biological knowledge. For these reasons researchers are continuously attempting to find out new treatment options, which in a near future could be translated to the clinical practice. In the last two decades, a strong effort has been spent in the field of translational research of immunotherapy which led to satisfactory results. Indeed, several immunotherapeutic clinical trials have been performed and some of them also resulted beneficial. Here, we summarize preclinical studies based on immunotherapeutic approaches applied in models of both NB and MM.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Immunotherapy/methods , Melanoma/therapy , Neural Crest/pathology , Neuroblastoma/therapy , Adult , Animals , Child , Clinical Trials as Topic , Disease Models, Animal , Drug Evaluation, Preclinical , Humans , Melanoma/immunology , Melanoma/pathology , Neuroblastoma/immunology , Neuroblastoma/pathology , Remission Induction , Translational Research, Biomedical
3.
J Control Release ; 170(3): 445-51, 2013 Sep 28.
Article in English | MEDLINE | ID: mdl-23792118

ABSTRACT

Neuroblastoma is an embryonal tumor originating from the simpatico-adrenal lineage of the neural crest. It approximately accounts for about 15% of all pediatric oncology deaths. Despite advances in multimodal therapy, metastatic neuroblastoma tumors at diagnosis remain a clinical challenge. Retinoids are a class of compounds known to induce both terminal differentiation and apoptosis/necrosis of neuroblastoma cells. Among them, fenretinide (HPR) has been considered one of the most promising anti-tumor agent but it is partially efficacious due to both poor aqueous solubility and rapid metabolism. Here, we have developed a novel HPR formulation, by which the drug was encapsulated into sterically stabilized nanoliposomes (NL[HPR]) according to the Reverse Phase Evaporation method. This procedure led to a higher structural integrity of liposomes in organic fluids for a longer period of time, in comparison with our previous liposomal formulation developed by the film method. Moreover, NL[HPR] were further coupled with NGR peptides for targeting the tumor endothelial cell marker, aminopeptidase N (NGR-NL[HPR]). Orthotopically xenografted neuroblastoma-bearing mice treated with NGR-NL[HPR] lived statistically longer than mice untreated or treated with free HPR (NGR-NL[HPR] vs both control and HPR: P<0.0001). Also, NL[HPR] resulted in a statistically improved survival (NL[HPR] vs both control and HPR: P<0.001) but to a less extent if compared with that obtained with NGR-NL[HPR] (NGR-NL[HPR] vs NL[HPR]: P<0.01). Staining of tumor sections with antibodies specific for neuroblastoma and for either pericytes or endothelial cells evidenced that HPR reduced neuroblastoma growth through both anti-tumor and anti-angiogenic effects, mainly when delivered by NGR-NL[HPR]. Indeed, in this group of mice a marked reduction of tumor progression, of intra-tumoral vessel counts and VEGF expression, together with a marked down-modulation of matrix metalloproteinases MMP2 and MMP9, was observed. In conclusion, the use of this novel targeted delivery system for the apoptotic and antiangiogenic drug, fenretinide, could be considered as an adjuvant tool in the future treatment of neuroblastoma patients.


Subject(s)
Antineoplastic Agents/administration & dosage , Fenretinide/administration & dosage , Neovascularization, Pathologic/drug therapy , Neuroblastoma/drug therapy , Animals , Antineoplastic Agents/chemistry , Cell Line, Tumor , Female , Fenretinide/chemistry , Humans , Liposomes , Mice , Mice, Nude , Neovascularization, Pathologic/pathology , Neuroblastoma/pathology
4.
Int J Cancer ; 104(5): 559-67, 2003 May 01.
Article in English | MEDLINE | ID: mdl-12594810

ABSTRACT

Neuroblastoma (NB) is the most common extracranial solid tumor of childhood. In advanced disease stages, prognosis is poor and treatments have limited efficacy, thus novel strategies are warranted. The synthetic retinoid Fenretinide (HPR) induces apoptosis in NB and melanoma cell lines. We reported an in vitro potentiation of HPR effects on melanoma cells when the drug is incorporated into GD2-targeted immunoliposomes (anti-GD2-SIL-HPR). We investigated the antitumor activity of anti-GD2-SIL-HPR against NB cells, both in vitro and in vivo. Anti-GD2-SIL showed specific, competitive binding to and uptake by, various NB cell lines. In in vitro cytotoxicity studies, NB cells, incubated with 30 microM HPR entrapped in anti-GD2-immunoliposomes, showed a significant reduction in cellular growth compared to free HPR, HPR entrapped in Ab-free liposomes or anti-GD2 empty liposomes. In an in vivo NB metastatic model, we demonstrated that anti-GD2-SIL-HPR completely inhibited the development of macroscopic and microscopic metastases in comparison to controls. Similar, but significantly less potent, antitumor effect was observed also in mice treated with anti-GD2 immunoliposomes without HPR (anti-GD2-SIL-blank) or anti-GD2 MAb alone (p = 0.0297 and p = 0.0294, respectively, vs. anti-GD2-SIL-HPR). Moreover, our results clearly demonstrated that although anti-GD2 MAb had a strong antitumor effect in this in vivo NB model, 100% curability was obtained only after treatment with anti-GD2-SIL-HPR (p < 0.0001). Anti-GD2 liposomal HPR should receive clinical evaluation as adjuvant therapy of neuroblastoma.


Subject(s)
Apoptosis/drug effects , Fenretinide/pharmacology , Fenretinide/therapeutic use , Liposomes/administration & dosage , Neuroblastoma/drug therapy , Neuroblastoma/pathology , Animals , Cell Division , Disease Models, Animal , Fenretinide/administration & dosage , Humans , Mice , Mice, Nude , Neoplasm Metastasis , Neoplasm Transplantation , Survival Analysis , Time Factors , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL