ABSTRACT
BACKGROUND: The thermophilic, anaerobic bacterium, Clostridium thermocellum is a model organism for consolidated processing due to its efficient fermentation of cellulose. Constituents of dilute acid pretreatment hydrolysate are known to inhibit C. thermocellum and other microorganisms. To evaluate the biological impact of this type of hydrolysate, a transcriptomic analysis of growth in hydrolysate-containing medium was conducted on 17.5% v/v Populus hydrolysate-tolerant mutant (PM) and wild type (WT) strains of C. thermocellum. RESULTS: In two levels of Populus hydrolysate medium (0% and 10% v/v), the PM showed both gene specific increases and decreases of gene expression compared to the wild-type strain. The PM had increased expression of genes in energy production and conversion, and amino acid transport and metabolism in both standard and 10% v/v Populus hydrolysate media. In particular, expression of the histidine metabolism increased up to 100 fold. In contrast, the PM decreased gene expression in cell division and sporulation (standard medium only), cell defense mechanisms, cell envelope, cell motility, and cellulosome in both media. The PM downregulated inorganic ion transport and metabolism in standard medium but upregulated it in the hydrolysate media when compared to the WT. The WT differentially expressed 1072 genes in response to the hydrolysate medium which included increased transcription of cell defense mechanisms, cell motility, and cellulosome, and decreased expression in cell envelope, amino acid transport and metabolism, inorganic ion transport and metabolism, and lipid metabolism, while the PM only differentially expressed 92 genes. The PM tolerates up to 17.5% v/v Populus hydrolysate and growth in it elicited 489 genes with differential expression, which included increased expression in energy production and conversion, cellulosome production, and inorganic ion transport and metabolism and decreased expression in transcription and cell defense mechanisms. CONCLUSION: These results suggest the mechanisms of tolerance for the Populus hydrolysate-tolerant mutant strain of C. thermocellum are based on increased cellular efficiency caused apparently by downregulation of non-critical genes and increasing the expression of genes in energy production and conversion rather than tolerance to specific hydrolysate components. The wild type, conversely, responds to hydrolysate media by down-regulating growth genes and up-regulating stress response genes.
Subject(s)
Anti-Bacterial Agents/pharmacology , Clostridium thermocellum/drug effects , Clostridium thermocellum/genetics , Drug Tolerance , Gene Expression Profiling , Plant Extracts/pharmacology , Populus/chemistry , Anti-Bacterial Agents/isolation & purification , Cellulose/chemistry , Clostridium thermocellum/growth & development , Culture Media/chemistry , Hydrolysis , Metabolic Networks and Pathways/genetics , Plant Extracts/isolation & purificationABSTRACT
Pelosinus fermentans 16S rRNA gene sequences have been reported from diverse geographical sites since the recent isolation of the type strain. We present the genome sequence of the P. fermentans type strain R7 (DSM 17108) and genome sequences for two new strains with different abilities to reduce iron, chromate, and uranium.
Subject(s)
DNA, Bacterial/chemistry , DNA, Bacterial/genetics , Genome, Bacterial , Sequence Analysis, DNA , Veillonellaceae/genetics , Chromium/metabolism , Environmental Microbiology , Environmental Pollutants/metabolism , Iron/metabolism , Molecular Sequence Data , Oxidation-Reduction , Uranium/metabolism , Veillonellaceae/isolation & purification , Veillonellaceae/metabolismABSTRACT
The determination of the success of in situ bioremediation strategies is complex. By using controlled laboratory conditions, the influence of individual variables, such as U(VI), Cr(VI), and electron donors and acceptors on community structure, dynamics, and the metal-reducing potential can be studied. Triplicate anaerobic, continuous-flow reactors were inoculated with Cr(VI)-contaminated groundwater from the Hanford, WA, 100-H area, amended with lactate, and incubated for 95 days to obtain stable, enriched communities. The reactors were kept anaerobic with N(2) gas (9 ml/min) flushing the headspace and were fed a defined medium amended with 30 mM lactate and 0.05 mM sulfate with a 48-h generation time. The resultant diversity decreased from 63 genera within 12 phyla to 11 bacterial genera (from 3 phyla) and 2 archaeal genera (from 1 phylum). Final communities were dominated by Pelosinus spp. and to a lesser degree, Acetobacterium spp., with low levels of other organisms, including methanogens. Four new strains of Pelosinus were isolated, with 3 strains being capable of Cr(VI) reduction while one also reduced U(VI). Under limited sulfate, it appeared that the sulfate reducers, including Desulfovibrio spp., were outcompeted. These results suggest that during times of electron acceptor limitation in situ, organisms such as Pelosinus spp. may outcompete the more-well-studied organisms while maintaining overall metal reduction rates and extents. Finally, lab-scale simulations can test new strategies on a smaller scale while facilitating community member isolation, so that a deeper understanding of community metabolism can be revealed.
Subject(s)
Biodegradation, Environmental , Ecosystem , Geologic Sediments/microbiology , Lactates/metabolism , Uranium/metabolism , Veillonellaceae/growth & development , Archaea/classification , Archaea/genetics , Archaea/growth & development , Archaea/isolation & purification , Archaea/metabolism , Bacteria/classification , Bacteria/genetics , Bacteria/growth & development , Bacteria/isolation & purification , Bacteria/metabolism , Bioreactors , Chromium/metabolism , Culture Media , DNA, Archaeal/analysis , DNA, Archaeal/genetics , DNA, Bacterial/analysis , DNA, Bacterial/genetics , Groundwater/microbiology , Molecular Sequence Data , Oxidation-Reduction , Phylogeny , RNA, Ribosomal, 16S , Sequence Analysis, DNA , Veillonellaceae/classification , Veillonellaceae/genetics , Veillonellaceae/isolation & purificationABSTRACT
Archaeal communities from mercury and uranium-contaminated freshwater stream sediments were characterized and compared to archaeal communities present in an uncontaminated stream located in the vicinity of Oak Ridge, TN, USA. The distribution of the Archaea was determined by pyrosequencing analysis of the V4 region of 16S rRNA amplified from 12 streambed surface sediments. Crenarchaeota comprised 76% of the 1,670 archaeal sequences and the remaining 24% were from Euryarchaeota. Phylogenetic analysis further classified the Crenarchaeota as a Freshwater Group, Miscellaneous Crenarchaeota group, Group I3, Rice Cluster VI and IV, Marine Group I and Marine Benthic Group B; and the Euryarchaeota into Methanomicrobiales, Methanosarcinales, Methanobacteriales, Rice Cluster III, Marine Benthic Group D, Deep Sea Hydrothermal Vent Euryarchaeota 1 and Eury 5. All groups were previously described. Both hydrogen- and acetate-dependent methanogens were found in all samples. Most of the groups (with 60% of the sequences) described in this study were not similar to any cultivated isolates, making it difficult to discern their function in the freshwater microbial community. A significant decrease in the number of sequences, as well as in the diversity of archaeal communities was found in the contaminated sites. The Marine Group I, including the ammonia oxidizer Nitrosopumilus maritimus, was the dominant group in both mercury and uranium/nitrate-contaminated sites. The uranium-contaminated site also contained a high concentration of nitrate, thus Marine Group I may play a role in nitrogen cycle.
Subject(s)
Archaea/isolation & purification , Geologic Sediments/microbiology , Rivers/microbiology , Archaea/classification , Archaea/genetics , Archaea/metabolism , Biodiversity , DNA, Archaeal/genetics , DNA, Ribosomal/genetics , Mercury/metabolism , Molecular Sequence Data , Phylogeny , RNA, Ribosomal, 16S/genetics , Uranium/metabolism , Water Pollutants, Chemical/metabolismABSTRACT
Analogous to the situation found in calibration, a classification model constructed from spectra measured on one instrument may not be valid for prediction of class from spectra measured on a second instrument. In this paper, the transfer of multivariate classification models between laboratory and process near-infrared spectrometers is investigated for the discrimination of whole, green Coffea arabica (Arabica) and Coffea canefora (Robusta) coffee beans. A modified version of slope/bias correction, orthogonal signal correction trained on a vector of discrete class identities, and model updating were found to perform well in the preprocessing of data to permit the transfer of a classification model developed on data from one instrument to be used on another instrument. These techniques permitted development of robust models for the discrimination of green coffee beans on both spectrometers and resulted in misclassification errors for the transfer process in the range of 5-10%.
Subject(s)
Algorithms , Coffee/chemistry , Coffee/classification , Fabaceae/chemistry , Fabaceae/classification , Food Analysis/methods , Pattern Recognition, Automated/methods , Spectrophotometry, Infrared/methods , Computer Simulation , Models, Chemical , Models, Statistical , Multivariate AnalysisABSTRACT
A total of 407 isolates of Streptococcus pneumoniae, most of which were resistant to one or more antibiotics, were tested for susceptibility to telithromycin and four other agents. Telithromycin was the most active agent tested, with 98% of isolates susceptible to < or = 1.0 mg/L. For strains resistant to the other antibiotics, susceptibility to telithromycin ranged from 98.6% for strains resistant to trimethoprim/sulfamethoxazole to 94.4% for strains resistant to cefotaxime.