Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Country/Region as subject
Language
Affiliation country
Publication year range
1.
Sci Total Environ ; 891: 164295, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37211136

ABSTRACT

Airborne pollen monitoring has been conducted for more than a century now, as knowledge of the quantity and periodicity of airborne pollen has diverse use cases, like reconstructing historic climates and tracking current climate change, forensic applications, and up to warning those affected by pollen-induced respiratory allergies. Hence, related work on automation of pollen classification already exists. In contrast, detection of pollen is still conducted manually, and it is the gold standard for accuracy. So, here we used a new-generation, automated, near-real-time pollen monitoring sampler, the BAA500, and we used data consisting of both raw and synthesised microscope images. Apart from the automatically generated, commercially-labelled data of all pollen taxa, we additionally used manual corrections to the pollen taxa, as well as a manually created test set of bounding boxes and pollen taxa, so as to more accurately evaluate the real-life performance. For the pollen detection, we employed two-stage deep neural network object detectors. We explored a semi-supervised training scheme to remedy the partial labelling. Using a teacher-student approach, the model can add pseudo-labels to complete the labelling during training. To evaluate the performance of our deep learning algorithms and to compare them to the commercial algorithm of the BAA500, we created a manual test set, in which an expert aerobiologist corrected automatically annotated labels. For the novel manual test set, both the supervised and semi-supervised approaches clearly outperform the commercial algorithm with an F1 score of up to 76.9 % compared to 61.3 %. On an automatically created and partially labelled test dataset, we obtain a maximum mAP of 92.7 %. Additional experiments on raw microscope images show comparable performance for the best models, which potentially justifies reducing the complexity of the image generation process. Our results bring automatic pollen monitoring a step forward, as they close the gap in pollen detection performance between manual and automated procedure.


Subject(s)
Pollen , Rhinitis, Allergic, Seasonal , Humans , Supervised Machine Learning , Algorithms , Climate Change
2.
Sci Total Environ ; 796: 148932, 2021 Nov 20.
Article in English | MEDLINE | ID: mdl-34273827

ABSTRACT

Allergic diseases have been the epidemic of the century among chronic diseases. Particularly for pollen allergies, and in the context of climate change, as airborne pollen seasons have been shifting earlier and abundances have been becoming higher, pollen monitoring plays an important role in generating high-risk allergy alerts. However, this task requires labour-intensive and time-consuming manual classification via optical microscopy. Even new-generation, automatic, monitoring devices require manual pollen labelling to increase accuracy and to advance to genuinely operational devices. Deep Learning-based models have the potential to increase the accuracy of automated pollen monitoring systems. In the current research, transfer learning-based convolutional neural networks were employed to classify pollen grains from microscopic images. Given a high imbalance in the dataset, we incorporated class weighted loss, focal loss and weight vector normalisation for class balancing as well as data augmentation and weight penalties for regularisation. Airborne pollen has been routinely recorded by a Bio-Aerosol Analyzer (BAA500, Hund GmbH) located in Augsburg, Germany. Here we utilised a database referring to manually classified airborne pollen images of the whole pollen diversity throughout an annual pollen season. By using the cropped pollen images collected by this device, we achieved an unweighted average F1 score of 93.8% across 15 classes and an unweighted average F1 score of 75.9% across 31 classes. The majority of taxa (9 of 15), being also the most abundant and allergenic, showed a recall of at least 95%, reaching up to a remarkable 100% in pollen from Taxus and Urticaceae. The recent introduction of novel pollen monitoring devices worldwide has pointed to the necessity for real-time, automatic measurements of airborne pollen and fungal spores. Thus, we may improve everyday clinical practice and achieve the most efficient prophylaxis of allergic patients.


Subject(s)
Deep Learning , Rhinitis, Allergic, Seasonal , Allergens , Environmental Monitoring , Humans , Pollen , Seasons
3.
J Allergy Clin Immunol ; 146(3): 583-594.e6, 2020 09.
Article in English | MEDLINE | ID: mdl-32272131

ABSTRACT

BACKGROUND: Pollen exposure induces local and systemic allergic immune responses in sensitized individuals, but nonsensitized individuals also are exposed to pollen. The kinetics of symptom expression under natural pollen exposure have never been systematically studied, especially in subjects without allergy. OBJECTIVE: We monitored the humoral immune response under natural pollen exposure to potentially uncover nasal biomarkers for in-season symptom severity and identify protective factors. METHODS: We compared humoral immune response kinetics in a panel study of subjects with seasonal allergic rhinitis (SAR) and subjects without allergy and tested for cross-sectional and interseasonal differences in levels of serum and nasal, total, and Betula verrucosa 1-specific immunoglobulin isotypes; immunoglobulin free light chains; cytokines; and chemokines. Nonsupervised principal component analysis was performed for all nasal immune variables, and single immune variables were correlated with in-season symptom severity by Spearman test. RESULTS: Symptoms followed airborne pollen concentrations in subjects with SAR, with a time lag between 0 and 13 days depending on the pollen type. Of the 7 subjects with nonallergy, 4 also exhibited in-season symptoms whereas 3 did not. Cumulative symptoms in those without allergy were lower than in those with SAR but followed the pollen exposure with similar kinetics. Nasal eotaxin-2, CCL22/MDC, and monocyte chemoattactant protein-1 (MCP-1) levels were higher in subjects with SAR, whereas IL-8 levels were higher in subjects without allergy. Principal component analysis and Spearman correlations identified nasal levels of IL-8, IL-33, and Betula verrucosa 1-specific IgG4 (sIgG4) and Betula verrucosa 1-specific IgE (sIgE) antibodies as predictive for seasonal symptom severity. CONCLUSIONS: Nasal pollen-specific IgA and IgG isotypes are potentially protective within the humoral compartment. Nasal levels of IL-8, IL-33, sIgG4 and sIgE could be predictive biomarkers for pollen-specific symptom expression, irrespective of atopy.


Subject(s)
Allergens/immunology , Antigens, Plant/immunology , Pollen/immunology , Rhinitis, Allergic, Seasonal/immunology , Adult , Biomarkers , Female , Humans , Immunoglobulin A/blood , Immunoglobulin A/immunology , Immunoglobulin E/blood , Immunoglobulin E/immunology , Immunoglobulin G/blood , Immunoglobulin G/immunology , Interleukin-33/immunology , Interleukin-8/immunology , Male , Middle Aged , Nasal Mucosa/immunology , Rhinitis, Allergic, Seasonal/blood , Seasons , Young Adult
4.
Annu Int Conf IEEE Eng Med Biol Soc ; 2019: 4474-4478, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31946859

ABSTRACT

Pollen allergies are considered as a global epidemic nowadays, as they influence more than a quarter of the worldwide population, with this percentage expected to rapidly increase because of ongoing climate change. To date, alerts on high-risk allergenic pollen exposure have been provided only via forecasting models and conventional monitoring methods that are laborious. The aim of this study is to develop and evaluate our own pollen classification model based on deep neural networks. Airborne allergenic pollen have been monitored in Augsburg, Bavaria, Germany, since 2015, using a novel automatic Bio-Aerosol Analyzer (BAA 500, Hund GmbH). The automatic classification system is compared and evaluated against our own, newly developed algorithm. Our model achieves an unweighted average precision of 83.0 % and an unweighted average recall of 77.1 % across 15 classes of pollen taxa. Automatic, real-time information on concentrations of airborne allergenic pollen will significantly contribute to the implementation of timely, personalized management of allergies in the future. It is already clear that new methods and sophisticated models have to be developed so as to successfully switch to novel operational pollen monitoring techniques serving the above need.


Subject(s)
Allergens , Neural Networks, Computer , Pollen , Environmental Monitoring , Forecasting , Germany , Seasons
SELECTION OF CITATIONS
SEARCH DETAIL