Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters

Database
Country/Region as subject
Language
Affiliation country
Publication year range
1.
Sci Total Environ ; 832: 155040, 2022 Aug 01.
Article in English | MEDLINE | ID: mdl-35385760

ABSTRACT

Digestate is the anaerobic digestion by-product of biogas production that can be used as a phosphorus (P) fertilizer. To achieve the efficient utilization of digestate as a P fertilizer and evaluate P availability in digestate-amended soils, it is necessary to assess both available P in different digestates and digestate-amended soils. In this study, Fourier transform mid-infrared photoacoustic spectroscopy (FTIR-PAS) combined with multivariate analysis was applied to predict water-extractable P (WEP) in digestates and plant-available P in digestate-amended soils. The plant-available P was determined by the diffusive gradients in thin films (DGT) technique. 45 digestate samples were collected both from laboratory-scale digesters (26 samples) and operating biogas plants (19 samples) in Denmark for WEP determination. Three soils amended with the collected 19 digestate samples from biogas plants (that results to 57 digestate-amended soil samples in total) were deployed for DGT measurement of plant- available P. The WEP predicting model had a coefficient of determination (R2) of 0.80 and a root mean square error of 0.78 g kg-1 while the plant-available P predicting model exhibited an R2 of 0.70 and a root mean square error of 134.09 µg P L-1. Furthermore, regression coefficients with a significant contribution of the plant-available P predicting model were identified, indicating that FTIR-PAS is capable for correlating spectra information with plant-available P related chemical bonds. In conclusion, FTIR-PAS can be used as a faster and non-destructive alternative for the assessment of both WEP in digestates and plant-available P in digestate-amended soils.


Subject(s)
Fertilizers , Soil , Biofuels/analysis , Fertilizers/analysis , Fourier Analysis , Phosphorus/chemistry , Plants , Soil/chemistry , Spectrophotometry, Infrared
2.
Sci Total Environ ; 816: 151518, 2022 Apr 10.
Article in English | MEDLINE | ID: mdl-34762963

ABSTRACT

Nitrate (N) leaching from intensively managed cropping systems is of environmental concern and it varies at local scale. To evaluate the performance of agricultural practices at this scale, there is a need to develop comprehensive assessments of N leaching and the N leaching reduction potential of mitigation measures. A model-based analysis was performed to (i) estimate N leaching from Danish cropping systems, representing 20 crop rotations, 3 soil types, 2 climates and 3-4 levels of manure (slurry)-to-fertilizer ratios, but with same available N (according to regulatory N fertilization norms), and (ii) appraise mitigation potential of on-farm measures (i.e. catch crops, early sowing of winter cereals) to reduce N leaching. The analysis was performed using a process-based agro-environmental model (Daisy). Simulated average N leaching over 24 years ranged from 16 to 85 kg N/ha/y for different crop rotations. Rotations with a higher proportion of spring crops were more prone to leaching than rotations having a higher proportion of winter cereals and semi-perennial grass-clover leys. N leaching decreased with increasing soil clay content under all conditions. The effect of two climates (different regions, mainly differing in precipitation) on N leaching was generally similar, with slight variation across rotations. Supplying a part of the available N as manure-N resulted in similar N leaching as mineral fertilizer N alone during the simulation period. Among the mitigation measures, both undersown and autumn sown catch crops were effective. Effectiveness of measures also depended on their place and frequency of occurrence in a rotation. Adopting catch crops during the most leaching-prone years and with higher frequency were effective choices. This analysis provided essential data-driven knowledge on N leaching risk, and potential of leaching reduction options. These results can serve as a supplementary guiding-tool for farmers to plan management practices, and for legislators to design farm-specific regulatory measures.


Subject(s)
Agriculture , Nitrates , Denmark , Fertilizers , Nitrates/analysis , Nitrogen/analysis , Soil
3.
Waste Manag ; 120: 716-724, 2021 Feb 01.
Article in English | MEDLINE | ID: mdl-33199241

ABSTRACT

Thermal conversion of phosphorus (P)-rich waste materials such as sewage sludge offers several advantages: generation of bioenergy, concentration of plant nutrients and the destruction of organic pollutants. Different thermal processes modify the feedstock's chemical and physical structure in differing ways, which also affects P speciation and plant availability in the residual ashes or carbonization products. This study assessed to which extent the P plant availability of ashes and chars produced from one batch of sewage sludge by incineration, pyrolysis or gasification was affected by particle size management and post-process oxidation. Overall, a smaller particle size of the materials as well as post-process oxidation of non-oxidized materials increased the amount of plant-available P in the soil. In a pot experiment, all the materials increased plant biomass compared with the untreated control, but the pyrolysis chars had a substantially greater fertiliser value than the gasification ashes, while the two tested incineration ashes differed in their P fertilizing effect. P availability in non-oxidized materials was partly related to lower process temperatures and lower levels of crystallinity. However, downstream oxidation simultaneously increased crystallinity and P availability in a pyrolysis char and gasification ashes, resulting in an increase in plant P uptake of up to 60%. Results indicate that the oxidation of poorly soluble Fe-phosphates may contribute to the positive effect on P availability. The results suggest that changes to the design and settings of the thermal conversion processes of sewage sludge offer considerable potential for improving P availability in the residual material.


Subject(s)
Phosphorus , Sewage , Fertilizers , Incineration , Particle Size
5.
Chemosphere ; 223: 723-730, 2019 May.
Article in English | MEDLINE | ID: mdl-30802838

ABSTRACT

Globally, more than 30% of soils are poor in phosphorus (P) and the productivity of these soils is severely restricted without the addition of P fertiliser. With future P supplies becoming limited, it is becoming increasingly important to identify ways of optimising the use of waste materials as P fertilisers. One technology that has been promoted extensively in recent years to improve quality of degraded soils is the application of biochar. In this context, char produced from recycled animal bone is of special interest because of its high P content (∼15%). This study investigated how production temperature affects chemical P forms in bone char and the impact on soil P availability in different P-deficient soils. The major P form in dried bone meal was poorly crystalline hydroxyapatite. As the pyrolysis temperature increased to 1050 °C, the hydroxyapatite structure measured with X-ray absorption near edge structure (XANES) spectroscopy persisted. Furthermore, crystallinity increased at temperatures above 750 °C, as revealed by X-ray powder diffraction (XRD). Plant availability was highest for bone char produced between 300 °C and 500 °C in three acidic soils from three continents, and declined rapidly above 750 °C. This strongly indicated that crystallinity of hydroxyapatite limits plant availability at high pyrolysis temperatures. In a high pH soil, all materials resulted in low P availability. As pyrolysis increased the P availability in comparison with dried bone, it was concluded that bone char produced at temperatures between 300 °C and 500 °C has the potential to improve fertility of P-poor, low pH soils.


Subject(s)
Apatites , Charcoal/pharmacology , Phosphorus , Soil/chemistry , Animals , Bone and Bones/chemistry , Charcoal/chemistry , Fertilizers , Temperature
6.
Chemosphere ; 169: 377-386, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27886540

ABSTRACT

Biochar application to agricultural land has been proposed as a means for improving phosphorus (P) availability in soil. The purpose of the current study was to understand how pyrolysis temperature affects P speciation in biochar and how this affects availability of P in the amended soil. Biochar was produced at different temperatures from digestate solids. The primary species of P in digestate solids were simple calcium phosphates. However, a high co-occurrence of magnesium (Mg) and P, indicated that struvite or other magnesium phosphates may also be important species. At low temperatures, pyrolysis had little effect on P speciation; however, as the temperature increased above 600 °C, the P gradually became more thermodynamically stable in species such as apatite. At very high temperatures above 1000 °C, there were indications of reduced forms of P. Biochar production decreased the immediate availability of P in comparison with the original digestate solids. However, for biochar produced at low temperatures, availability quickly increased to the same levels as in the digestate solids. For biochar produced at higher temperatures, availability remained depressed for much longer. The low availability of P in the biochar produced at high temperatures can probably be explained by the formation of less soluble P species in the biochar. In contrast, the transient decrease of availability of the P in the biochar produced at low temperatures can be explained by mechanisms, such as sorption on biochar, which gradually decreases because of oxidation of the biochar surfaces or changes in pH around the biochar particles.


Subject(s)
Charcoal/chemistry , Manure , Phosphorus/chemistry , Soil/chemistry , Agriculture , Hot Temperature , Oxidation-Reduction
7.
Bioresour Technol ; 169: 543-551, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25089896

ABSTRACT

The alteration of easily available phosphorus (P) from the separated solid fraction of pig slurry by composting and thermal processing (pyrolysis or combustion at 300-1000 °C) was investigated by water and acidic extractions and the diffusive gradients in thin films (DGT) technique. Temporal changes in P availability were monitored by repeated DGT application in three amended temperate soils over 16 weeks. P availability was found to decrease in the order: drying>composting>pyrolysis>combustion with increasing degree of processing. Water extractions suggested that no P would be available after pyrolysis above 700 °C or combustion above 400 °C, respectively, but during soil incubation, even char and ash, processed at 800 °C, increased P availability. Low-temperature pyrolysis vs. combustion was found to favor P availability as did application to acidic vs. neutral soil. Composting and thermal treatment produced a slow-release P fertilizer, with P availability being governed by abiotic and biotic mechanisms.


Subject(s)
Phosphorus/isolation & purification , Sewage/chemistry , Soil/chemistry , Temperature , Animals , Biodegradation, Environmental , Carbon/analysis , Charcoal/chemistry , Chemical Fractionation , Diffusion , Hydrogen-Ion Concentration , Nitrogen/analysis , Sus scrofa , Time Factors
8.
J Environ Manage ; 132: 60-70, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24291578

ABSTRACT

Animal slurry management is associated with a range of impacts on fossil resource use and the environment. The impacts are greatest when large amounts of nutrient-rich slurry from livestock production cannot be adequately utilised on adjacent land. To facilitate nutrient redistribution, a range of different technologies are available. This study comprised a life cycle assessment of the environmental impacts from handling 1000 kg of pig slurry ex-animal. Application of untreated pig slurry onto adjacent land was compared with using four different treatment technologies to enable nutrient redistribution before land application: (a) separation by mechanical screw press, (b) screw press separation with composting of the solid fraction, (c) separation by decanter centrifuge, and (d) decanter centrifuge separation with ammonia stripping of the liquid fraction. Emissions were determined based on a combination of values derived from the literature and simulations with the Farm-N model for Danish agricultural and climatic conditions. The environmental impact categories assessed were climate change, freshwater eutrophication, marine eutrophication, terrestrial acidification, natural resource use, and soil carbon, nitrogen and phosphorus storage. In all separation scenarios, the liquid fraction was applied to land on the pig-producing (donor) farm and the solid fraction transported to a recipient farm and utilised for crop production. Separation, especially by centrifuge, was found to result in a lower environmental impact potential than application of untreated slurry to adjacent land. Composting and ammonia stripping either slightly increased or slightly decreased the environmental impact potential, depending on the impact category considered. The relative ranking of scenarios did not change after a sensitivity analysis in which coefficients for field emissions of nitrous oxide, ammonia and phosphorus were varied within the range cited in the literature. Therefore, the best technology to implement in a given situation depends on the environmental problem in question, local policy, cost and practicality.


Subject(s)
Waste Disposal, Fluid/methods , Animals , Denmark , Environment , Sus scrofa , Waste Disposal, Fluid/instrumentation
9.
J Environ Manage ; 130: 447-56, 2013 Nov 30.
Article in English | MEDLINE | ID: mdl-24184986

ABSTRACT

Limits on land applications of slurry nitrogen (N) and phosphorus (P) are used to restrict losses of nutrients caused by livestock production. Here, we used a model to assess technologies that enable a more even geographic distribution of slurry nutrients to land. Technologies included were screw press slurry separation, with or without solid fraction composting, centrifuge separation with or without liquid fraction ammonia (NH3) stripping, and anaerobic digestion. Regulatory constraints were placed first on the application in slurry of N, then P, then N and P both on the producing (donor) and receiving (recipient) farms. Finally, a constraint preventing an increase in donor farm NH3 emissions was imposed. Separation had little effect on N losses per unit mass of slurry, but NH3 stripping led to a reduction. Centrifuge separation allowed a greater increase in pig production than a screw press, especially with P regulation. NH3 stripping was only advantageous with N regulation or when combined with NH3 scrubbing of pig housing ventilation air, when donor farm NH3 emissions were a constraint. There was a production penalty for using composting or anaerobic digestion. The choice of appropriate slurry management option therefore depends on the focus of the regulation. Nuanced and therefore complex regulations are necessary to take advantage of synergies and avoid cross-policy conflicts and incongruencies.


Subject(s)
Agriculture/methods , Conservation of Natural Resources , Manure , Models, Theoretical , Swine , Agriculture/legislation & jurisprudence , Ammonia/analysis , Ammonia/chemistry , Animals , Environmental Pollution/prevention & control , Geography , Nitrogen/analysis , Nitrogen/chemistry , Phosphorus/analysis , Phosphorus/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL