Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Anal Chim Acta ; 1301: 342413, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38553129

ABSTRACT

Two-dimensional (2D) cultures do not fully reflect the human organs' physiology and the real effectiveness of the used therapy. Therefore, three-dimensional (3D) models are increasingly used in bioanalytical science. Organ-on-a-chip systems are used to obtain cellular in vitro models, better reflecting the human body's in vivo characteristics and allowing us to obtain more reliable results than standard preclinical models. Such 3D models can be used to understand the behavior of tissues/organs in response to selected biophysical and biochemical factors, pathological conditions (the mechanisms of their formation), drug screening, or inter-organ interactions. This review characterizes 3D models obtained in microfluidic systems. These include spheroids/aggregates, hydrogel cultures, multilayers, organoids, or cultures on biomaterials. Next, the methods of formation of different 3D cultures in Organ-on-a-chip systems are presented, and examples of such Organ-on-a-chip systems are discussed. Finally, current applications of 3D cell-on-a-chip systems and future perspectives are covered.


Subject(s)
Microphysiological Systems , Organoids , Humans , Drug Evaluation, Preclinical/methods , Microfluidics
2.
Mater Sci Eng C Mater Biol Appl ; 98: 874-886, 2019 May.
Article in English | MEDLINE | ID: mdl-30813093

ABSTRACT

Photothermal therapy (PTT) has shown significant potential for anti-cancer modality. In this report, according to our best knowledge, we explore for the first time Ti2C-based MXene as a novel, highly efficient and selective agent for photothermal therapy (PTT). Ti2C superficially modified with PEG was obtained from the layered, commercially available Ti2AlC MAX phase in the process of etching aluminum layers using concentrated HF, and characterized by scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HREM) as well as X-ray photoelectron spectroscopy for chemical analysis (ESCA-XPS). The PEG-coated Ti2C flakes showed a satisfactory photothermal conversion efficacy (PTCE) and good biocompatibility in wide range of the tested concentrations. Through in vitro studies, the PEG-modified Ti2C demonstrated notable NIR-induced ability to cancerous cells' ablation with minimal impact on non-malignant cells up to the concentration of 37.5 µg mL-1. The applied doses of Ti2C_PEG in our work were even 24 times lower comparing other MXene-based photothermal agents. This work is expected to expand the utility of 2D MXenes to biomedical applications through the development of entirely novel agents for photothermal therapy. This work is expected to expand the utility of 2D MXenes to biomedical applications through the development of entirely novel agents for photothermal therapy.


Subject(s)
Hyperthermia, Induced , Phototherapy , Titanium/chemistry , Cell Death , Cell Line, Tumor , Humans , Photoelectron Spectroscopy , Polyethylene Glycols/chemistry , Reactive Oxygen Species/metabolism , Temperature
3.
Biosens Bioelectron ; 126: 214-221, 2019 Feb 01.
Article in English | MEDLINE | ID: mdl-30423478

ABSTRACT

Herein, we present the research focused on the synthesis and application of aptamer-modified gold nanoshells for photothermal therapy (PTT). NIR-absorbing hollow gold nanoshells were synthetized and conjugated with anti-MUC1 aptamer (HGNs@anti-MUC1). MUC1 (Mucin 1) is a transmembrane glycoprotein, which is overexpressed in a variety of epithelial cancers (eg. breast, lung, pancreatic). In order to evaluate the efficiency of PTT with HGNs@anti-MUC1 we used 3D cell culture model - multicellular spheroids. The selected cell culture model is considered as the best in vitro model for cancer research (similar morphology, metabolite and oxygen gradients, cellular interactions and cell growth kinetics in the spheroids are similar to the early stage of a nonvascular tumor). We conducted our research on human normal (MRC-5, MCF-10A) and tumor (A549, MCF-7) cell lines using a microfluidic system. Aptamer-modified nanoparticles were accumulated selectively in tumor cells (A549, MCF-7) and this fact contributed to the reduction of tumor spheroids viability and size. It should be underlined, that it is the first example of photothermal therapy carried out in a microsystem on multicellular spheroids.


Subject(s)
Aptamers, Peptide/chemistry , Biosensing Techniques , Mucin-1/chemistry , Neoplasms/diagnosis , A549 Cells , Aptamers, Peptide/pharmacology , Cell Proliferation/drug effects , Humans , MCF-7 Cells , Microfluidics , Mucin-1/genetics , Nanoshells/chemistry , Neoplasms/pathology , Phototherapy , Spheroids, Cellular/drug effects
4.
Biosens Bioelectron ; 40(1): 68-74, 2013 Feb 15.
Article in English | MEDLINE | ID: mdl-22770829

ABSTRACT

In this work, we present a microfluidic array of microwells for long-term tumor spheroid cultivation and anticancer drug activity evaluation. The three-dimensional microfluidic system was obtained by double casting of poly(dimethylsiloxane). Spheroids of HT-29 human carcinoma cells were cultured in the microsystem for four weeks. After two weeks of the culture growth slowdown and stop were observed and high cell viability was determined within next two weeks. The characteristics of a homeostasis-like state were achieved. A cytostatic drug (5-fluorouracil) was introduced into the microsystem with different frequency (every day or every second day) and different concentrations. The geometry and construction of the microsystem enables flushing away of unaggregated (including dead) cells while viable spheroids remain inside microwells and decreasing spheroid diameter can be observed and measured as an indicator of decreasing cell viability. The results have shown differences in response of spheroids to different concentrations of 5-fluorouracil. It was also observed, that higher frequency of drug dosing resulted in more rapid spheroid diameter decrease. The presented microfluidic system is a solution for cell-based studies in an in vivo-like microfluidic environment. Moreover, observation of decreasing spheroid dimensions is a low-cost, label-free and easy-to-conduct mean of a quantitative determination of a 3D cellular model response to a applied drug. It is suitable for long-term observation of spheroid response, in a contrary to other viability assays requiring termination of a culture.


Subject(s)
Antineoplastic Agents/administration & dosage , Cell Culture Techniques/instrumentation , Drug Evaluation, Preclinical/instrumentation , Flow Cytometry/instrumentation , Microfluidic Analytical Techniques/instrumentation , Neoplasms, Experimental/drug therapy , Equipment Failure Analysis , HT29 Cells , Humans , Neoplasms, Experimental/pathology , Sensitivity and Specificity , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL