Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Nutrients ; 12(7)2020 Jul 09.
Article in English | MEDLINE | ID: mdl-32660007

ABSTRACT

Antisteatotic effects of omega-3 fatty acids (Omega-3) in obese rodents seem to vary depending on the lipid form of their administration. Whether these effects could reflect changes in intestinal metabolism is unknown. Here, we compare Omega-3-containing phospholipids (krill oil; ω3PL-H) and triacylglycerols (ω3TG) in terms of their effects on morphology, gene expression and fatty acid (FA) oxidation in the small intestine. Male C57BL/6N mice were fed for 8 weeks with a high-fat diet (HFD) alone or supplemented with 30 mg/g diet of ω3TG or ω3PL-H. Omega-3 index, reflecting the bioavailability of Omega-3, reached 12.5% and 7.5% in the ω3PL-H and ω3TG groups, respectively. Compared to HFD mice, ω3PL-H but not ω3TG animals had lower body weight gain (-40%), mesenteric adipose tissue (-43%), and hepatic lipid content (-64%). The highest number and expression level of regulated intestinal genes was observed in ω3PL-H mice. The expression of FA ω-oxidation genes was enhanced in both Omega-3-supplemented groups, but gene expression within the FA ß-oxidation pathway and functional palmitate oxidation in the proximal ileum was significantly increased only in ω3PL-H mice. In conclusion, enhanced intestinal FA oxidation could contribute to the strong antisteatotic effects of Omega-3 when administered as phospholipids to dietary obese mice.


Subject(s)
Diet, High-Fat , Fatty Acids, Omega-3/administration & dosage , Fatty Acids/metabolism , Intestinal Mucosa/metabolism , Lipid Metabolism/drug effects , Phospholipids/administration & dosage , Triglycerides/administration & dosage , Animals , Blood Glucose/analysis , Body Weight , Erythrocyte Membrane/metabolism , Euphausiacea , Intestines/anatomy & histology , Male , Mice, Obese , Oils , Oxidation-Reduction
2.
Oncotarget ; 7(14): 17338-55, 2016 Apr 05.
Article in English | MEDLINE | ID: mdl-26943770

ABSTRACT

Antioxidant (AOX) deficiencies are commonly observed in older adults and oxidative stress has been suggested to contribute to sarcopenia. Here we investigate if 1) low levels of dietary antioxidants had a negative impact on parameters of muscle mass, function and quality, and 2) to study if nutritional interventions with AOX and/or leucine-enriched whey protein could improve these muscle parameters in aged mice. 18-months-old mice were fed a casein-based antioxidant-deficient (lowox) diet or a casein-based control-diet (CTRL) for 7 months. During the last 3 months, lowox-mice were subjected to either: a) continued lowox, b) supplementation with vitamin A/E, Selenium and Zinc (AOX), c) substitution of casein with leucine-enriched whey protein (PROT) or d) a combination of both AOX and PROT (TOTAL). After 7 months lowox-mice displayed lower muscle strength and more muscle fatigue compared to CTRL. Compared to lowox-mice, PROT-mice showed improved muscle power, grip strength and less muscle fatigue. AOX-mice showed improved oxidative status, less muscle fatigue, improved grip strength and mitochondrial dynamics compared to lowox-mice. The TOTAL-mice showed the combined effects of both interventions compared to lowox-mice. In conclusion, nutritional intervention with AOX and/or leucine-enriched whey protein can play a role in improving muscle health in a AOX-deficient mouse model.


Subject(s)
Antioxidants/administration & dosage , Diet , Leucine/administration & dosage , Muscle, Skeletal/physiology , Whey Proteins/administration & dosage , Age Factors , Animals , Male , Mice , Mice, Inbred C57BL , Models, Animal , Oxidative Stress/physiology , Random Allocation
3.
Toxicology ; 320: 67-73, 2014 Jun 05.
Article in English | MEDLINE | ID: mdl-24657404

ABSTRACT

ß-Carotene (BC) is omnipresent in our diet, both as natural food component as well as an additive. BC and its metabolites have important biological functions. For this reason, BC is generally considered to be a health promoting compound. Two human trials, however, have described adverse effects in lung tissue, increasing the risk of lung cancer. We previously applied transcriptomic analyses in a unique animal model, beta-carotene 15,15'-monooxygenase 1 knockout (Bcmo1(-/-)) mice that are, like humans, able to accumulate intact BC. In our search to unravel the molecular action of BC in the lung, we previously identified two genes particularly strongly down-regulated by BC in lung tissue of the male Bcmo1(-/-) mice: frizzled homologue 6 (Fzd6) and collagen triple helix repeat containing 1 (Cthrc1). In the present study, our aim was to further elucidate the role of FZD6 in lung epithelial cells and to provide a mechanistic explanation for BC increased lung cancer risk in humans. We performed whole genome microarray analysis on silenced FZD6 in non-tumor human type II bronchial epithelial BEAS-2B cells using RNAi. To directly link FZD6 to BC-effects on the lung, we compared the FZD6-silenced BEAS-2B gene expression profile to the BC-dependent gene expression profile of Bcmo1(-/-) mouse lungs. A number of relevant genes were regulated in the same direction in FZD6(-) BEAS-2B and in BC-exposed lungs of Bcmo1(-/-) mice and revealed enrichment of the Gene Ontology terms "oncogenes", "cell proliferation" and "cell cycle", which suggests a mediating role of FZD6 in BC-induced uncontrolled proliferation of lung cells.


Subject(s)
Epithelial Cells/drug effects , Frizzled Receptors/metabolism , Lung/drug effects , beta Carotene/pharmacology , beta-Carotene 15,15'-Monooxygenase/genetics , Animals , Bronchi/cytology , Bronchi/drug effects , Cell Line , Cell Proliferation/drug effects , Dietary Supplements , Down-Regulation , Epithelial Cells/metabolism , Frizzled Receptors/genetics , Gene Expression Regulation , Gene Silencing , Humans , Lung/metabolism , Male , Mice , Mice, Knockout , Oligonucleotide Array Sequence Analysis , Species Specificity
4.
Mol Nutr Food Res ; 57(11): 2039-48, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23946229

ABSTRACT

SCOPE: Dietary intake of cocoa and/or chocolate has been suggested to exhibit protective cardiovascular effects although this is still controversial. The aim of this study was to investigate the effects of chocolate supplementation on metabolic and cardiovascular parameters. METHODS AND RESULTS: Four groups of ApoE*3Leiden mice were exposed to the following diet regimens. Group 1: cholesterol-free control diet (CO). Group 2: high-dose (1.0% w/w) control cholesterol (CC). Group 3: CC supplemented chocolate A (CCA) and Group 4: CC supplemented chocolate B (CCB). Both chocolates differed in polyphenol and fiber content, CCA had a relatively high-polyphenol and low-fiber content compared to CCB. Mice fed a high-cholesterol diet showed increased plasma-cholesterol and developed atherosclerosis. Both chocolate treatments, particularly CCA, further increased plasma-cholesterol and increased atherosclerotic plaque formation. Moreover, compared to mice fed a high-cholesterol diet, both chocolate-treated groups displayed increased liver injury. Mice on high-cholesterol diet had elevated plasma levels of sVCAM-1, sE-selectin and SAA, which was further increased in the CCB group. Similar effects were observed for renal inflammation markers. CONCLUSION: The two chocolate preparations showed unfavorable, but different effects on cardiometabolic health in E3L mice, which dissimilarities may be related to differences in chocolate composition. We conclude that discrepancies reported on the effects of chocolate on cardiometabolic health may at least partly be due to differences in chocolate composition.


Subject(s)
Cacao/chemistry , Cardiovascular System/metabolism , Cholesterol, Dietary/administration & dosage , Diet, Atherogenic , Dietary Supplements , Animals , Apolipoprotein E3/genetics , Atherosclerosis/prevention & control , Candy , Cholesterol, Dietary/blood , Dietary Fiber/pharmacology , E-Selectin/blood , Female , Inflammation/metabolism , Liver/pathology , Mice , Plant Extracts/pharmacology , Plaque, Atherosclerotic/metabolism , Polyphenols/pharmacology , Serum Amyloid A Protein/metabolism , Vascular Cell Adhesion Molecule-1/blood
5.
PLoS One ; 7(8): e43764, 2012.
Article in English | MEDLINE | ID: mdl-22952760

ABSTRACT

Insulin resistance, the key defect in type 2 diabetes (T2D), is associated with a low capacity to adapt fuel oxidation to fuel availability, i.e., metabolic inflexibility. This, in turn, contributes to a further damage of insulin signaling. Effectiveness of T2D treatment depends in large part on the improvement of insulin sensitivity and metabolic adaptability of the muscle, the main site of whole-body glucose utilization. We have shown previously in mice fed an obesogenic high-fat diet that a combined use of n-3 long-chain polyunsaturated fatty acids (n-3 LC-PUFA) and thiazolidinediones (TZDs), anti-diabetic drugs, preserved metabolic health and synergistically improved muscle insulin sensitivity. We investigated here whether n-3 LC-PUFA could elicit additive beneficial effects on metabolic flexibility when combined with a TZD drug rosiglitazone. Adult male C57BL/6N mice were fed an obesogenic corn oil-based high-fat diet (cHF) for 8 weeks, or randomly assigned to various interventions: cHF with n-3 LC-PUFA concentrate replacing 15% of dietary lipids (cHF+F), cHF with 10 mg rosiglitazone/kg diet (cHF+ROSI), cHF+F+ROSI, or chow-fed. Indirect calorimetry demonstrated superior preservation of metabolic flexibility to carbohydrates in response to the combined intervention. Metabolomic and gene expression analyses in the muscle suggested distinct and complementary effects of the interventions, with n-3 LC-PUFA supporting complete oxidation of fatty acids in mitochondria and the combination with n-3 LC-PUFA and rosiglitazone augmenting insulin sensitivity by the modulation of branched-chain amino acid metabolism. These beneficial metabolic effects were associated with the activation of the switch between glycolytic and oxidative muscle fibers, especially in the cHF+F+ROSI mice. Our results further support the idea that the combined use of n-3 LC-PUFA and TZDs could improve the efficacy of the therapy of obese and diabetic patients.


Subject(s)
Diet, High-Fat/adverse effects , Fatty Acids, Omega-3/pharmacology , Muscle, Skeletal/drug effects , Muscle, Skeletal/metabolism , Obesity/etiology , Obesity/metabolism , Thiazolidinediones/pharmacology , Animals , Drug Synergism , Gene Expression Regulation/drug effects , Glycolysis/drug effects , Male , Metabolomics , Mice , Mice, Inbred C57BL , Muscle Fibers, Skeletal/drug effects , Muscle Fibers, Skeletal/metabolism , Oxidation-Reduction/drug effects , Rosiglitazone
6.
Carcinogenesis ; 31(8): 1329-37, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20472610

ABSTRACT

An ongoing controversy exists on beneficial versus harmful effects of high beta-carotene (BC) intake, especially for the lung. To elucidate potential mechanisms, we studied effects of BC on lung gene expression. We used a beta-carotene 15,15'-monooxygenase 1 (Bcmo1) knockout mouse (Bcmo1(-/-)) model, unable to convert BC to retinoids, and wild-type mice (Bcmo1(+/+)) mice to dissect the effects of intact BC from effects of BC metabolites. As expected, BC supplementation resulted in a higher BC accumulation in lungs of Bcmo1(-/-) mice than in lungs of Bcmo1(+/+) mice. Whole mouse genome transcriptome analysis on lung tissue revealed that more genes were regulated in Bcmo1(-/-) mice than Bcmo1(+/+) mice upon BC supplementation. Frizzled homolog 6 (Fzd6) and collagen triple helix repeat containing 1 (Cthrc1) were significantly downregulated (fold changes -2.99 and -2.60, respectively, false discovery rate < 0.05) by BC in Bcmo1(-/-). Moreover, many olfactory receptors and many members of the protocadherin family were upregulated. Since both olfactory receptors and protocadherins have an important function in sensory nerves and Fzd6 and Cthrc1 are important in stem cell development, we hypothesize that BC might have an effect on the highly innervated pulmonary neuroendocrine cell (PNEC) cluster. PNECs are highly associated with sensory nerves and are important cells in the control of stem cells. A role for BC in the innervated PNEC cluster might be of particular importance in smoke-induced carcinogenesis since PNEC-derived lung cancer is highly associated with tobacco smoke.


Subject(s)
Cadherins/genetics , Extracellular Matrix Proteins/genetics , Frizzled Receptors/genetics , Lung/physiology , Receptors, G-Protein-Coupled/genetics , Receptors, Odorant/genetics , beta Carotene/physiology , beta-Carotene 15,15'-Monooxygenase/deficiency , Animals , Carotenoids/isolation & purification , DNA Primers , Diet , Gene Amplification , Genome , Lung/cytology , Lung/drug effects , Lung/pathology , Male , Mice , Mice, Knockout , Oligonucleotide Array Sequence Analysis , RNA/genetics , RNA/isolation & purification , Retinoids/isolation & purification , Up-Regulation , beta Carotene/administration & dosage , beta Carotene/pharmacology
7.
Biochim Biophys Acta ; 1740(2): 139-46, 2005 May 30.
Article in English | MEDLINE | ID: mdl-15949680

ABSTRACT

Beta-carotene is a natural food component that is present in fruits and vegetables and is also used as a food colorant and a supplement. Beta-carotene is an anti-oxidant and a source of vitamin A. It is endowed with health beneficial properties, but a number of studies showed that with high intakes it may increase the risk for lung cancer in at risk individuals (heavy smokers, asbestos workers and alcohol users). To establish the window of benefit, it is necessary to identify early markers of effect and to obtain insight in the mechanism of action of beta-carotene, in the absence and presence of environmental risk factors. Genomics technologies are well suited to dissect the mechanisms of action and identify the markers of effect. Human cell lines can be used to analyse the effects of beta-carotene, but exposure studies with beta-carotene show that cell lines display a widely variant behaviour, which hampers translation to the in vivo situation in humans. Alternatively, animal studies can be used. Especially the ferret seems to be a good model, but little sequence information of this species is available. However, heterologous hybridization on human cDNA seems possible and provides and a new tool for molecular analysis of health effects of beta-carotene.


Subject(s)
Antioxidants/pharmacology , Dietetics , beta Carotene/pharmacology , Animals , Antioxidants/therapeutic use , Antioxidants/toxicity , Cell Line , Clinical Trials as Topic , Dietary Supplements/toxicity , Dietetics/standards , Humans , Lung Neoplasms/prevention & control , Models, Animal , No-Observed-Adverse-Effect Level , Oligonucleotide Array Sequence Analysis , Risk Assessment , beta Carotene/administration & dosage , beta Carotene/therapeutic use , beta Carotene/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL