Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
J Int Soc Sports Nutr ; 20(1): 2263409, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37800468

ABSTRACT

Position Statement: The International Society of Sports Nutrition (ISSN) presents this position based on a critical examination of literature surrounding the effects of essential amino acid (EAA) supplementation on skeletal muscle maintenance and performance. This position stand is intended to provide a scientific foundation to athletes, dietitians, trainers, and other practitioners as to the benefits of supplemental EAA in both healthy and resistant (aging/clinical) populations. EAAs are crucial components of protein intake in humans, as the body cannot synthesize them. The daily recommended intake (DRI) for protein was established to prevent deficiencies due to inadequate EAA consumption. The following conclusions represent the official position of the Society: 1. Initial studies on EAAs' effects on skeletal muscle highlight their primary role in stimulating muscle protein synthesis (MPS) and turnover. Protein turnover is critical for replacing degraded or damaged muscle proteins, laying the metabolic foundation for enhanced functional performance. Consequently, research has shifted to examine the effects of EAA supplementation - with and without the benefits of exercise - on skeletal muscle maintenance and performance. 2. Supplementation with free-form EAAs leads to a quick rise in peripheral EAA concentrations, which in turn stimulates MPS. 3. The safe upper limit of EAA intake (amount), without inborn metabolic disease, can easily accommodate additional supplementation. 4. At rest, stimulation of MPS occurs at relatively small dosages (1.5-3.0 g) and seems to plateau at around 15-18 g. 5. The MPS stimulation by EAAs does not require non-essential amino acids. 6. Free-form EAA ingestion stimulates MPS more than an equivalent amount of intact protein. 7. Repeated EAA-induced MPS stimulation throughout the day does not diminish the anabolic effect of meal intake. 8. Although direct comparisons of various formulas have yet to be investigated, aging requires a greater proportion of leucine to overcome the reduced muscle sensitivity known as "anabolic resistance." 9. Without exercise, EAA supplementation can enhance functional outcomes in anabolic-resistant populations. 10. EAA requirements rise in the face of caloric deficits. During caloric deficit, it's essential to meet whole-body EAA requirements to preserve anabolic sensitivity in skeletal muscle.


Subject(s)
Amino Acids , Muscle, Skeletal , Humans , Leucine , Amino Acids/pharmacology , Muscle Proteins/metabolism , Dietary Supplements
2.
Int J Sport Nutr Exerc Metab ; 32(6): 446-452, 2022 Nov 01.
Article in English | MEDLINE | ID: mdl-36007881

ABSTRACT

Creatine (Cr) supplementation is a well-established strategy to enhance gains in strength, lean body mass, and power from a period of resistance training. However, the effectiveness of creatyl-L-leucine (CLL), a purported Cr amide, is unknown. Therefore, the purpose of this study was to assess the effects of CLL on muscle Cr content. Twenty-nine healthy men (n = 17) and women (n = 12) consumed 5 g/day of either Cr monohydrate (n = 8; 28.5 ± 7.3 years, 172.1 ± 11.0 cm, 76.6 ± 10.7 kg), CLL (n = 11; 29.2 ± 9.3 years, 170.3 ± 10.5 cm, 71.9 ± 14.5 kg), or placebo (n = 10; 30.3 ± 6.9 years, 167.8 ± 9.9 cm, 69.9 ± 11.1 kg) for 14 days in a randomized, double-blind design. Participants completed three bouts of supervised resistance exercise per week. Muscle biopsies were collected before and after the intervention for quantification of muscle Cr. Cr monohydrate supplementation which significantly increased muscle Cr content with 14 days of supplementation. No changes in muscle Cr were observed for the placebo or CLL groups. Cr monohydrate supplementation is an effective strategy to augment muscle Cr content while CLL is not.


Subject(s)
Creatine , Leukemia, Lymphocytic, Chronic, B-Cell , Male , Young Adult , Female , Humans , Leucine/metabolism , Leukemia, Lymphocytic, Chronic, B-Cell/metabolism , Muscle, Skeletal/physiology , Dietary Supplements , Body Composition/physiology , Double-Blind Method , Amides/metabolism , Amides/pharmacology , Muscle Strength
3.
Am J Physiol Endocrinol Metab ; 320(5): E900-E913, 2021 05 01.
Article in English | MEDLINE | ID: mdl-33682457

ABSTRACT

Protein intake above the recommended dietary allowance (RDA) and resistance training are known anabolic stimuli to support healthy aging. Specifically, protein supplementation after resistance exercise and nightly are strategies to maximize utilization of protein intake above the RDA in healthy adults. As such, the primary objective was to examine the efficacy of protein supplementation and nutritional counseling resulting in either moderate (MOD: ∼1.0 g·kg-1·day-1) or higher (HIGH: ∼1.6 g·kg-1·day-1) protein intake during resistance training on strength (one-repetition maximum, 1-RM; isokinetic and isometric peak torque) in healthy middle-aged adults. Exploratory analyses include diet-exercise effects on lean body mass (LBM), clinical biomarkers, gut microbiota, and diet composition. In all, 50 middle-aged adults (age: 50 ± 8 yr, BMI: 27.2 ± 4.1 kg/m2) were randomized to either MOD or HIGH protein intake during a 10-wk resistance training program (3 × wk). Participants received dietary counseling and consumed either 15 g (MOD) or 30 g (HIGH) of protein from lean beef in the immediate postexercise period and each evening. Maximal strength (1-RM) for all upper and lower body exercises significantly increased with no effect of protein intake (P < 0.050). There was a main effect of time for LBM (P < 0.005). Cardiovascular, renal, or glycemic biomarkers were not affected by the intervention. Gut microbiota were associated with several health outcomes (P < 0.050). In conclusion, higher protein intake above moderate amounts does not potentiate resistance training adaptations in previously untrained middle-aged adults. This trial was registered at clinicaltrials.gov as NCT03029975.NEW & NOTEWORTHY Our research evaluates the efficacy of higher in comparison with moderate animal-based protein intake on resistance exercise training-induced muscle strength, clinical biomarkers, and gut microbiota in middle-aged adults through a dietary counseling-controlled intervention. Higher protein intake did not potentiate training adaptations, nor did the intervention effect disease biomarkers. Both diet and exercise modified gut microbiota composition. Collectively, moderate amounts of high-quality, animal-based protein is sufficient to promote resistance exercise adaptations at the onset of aging.


Subject(s)
Dietary Proteins/administration & dosage , Gastrointestinal Microbiome/drug effects , Muscle Strength/drug effects , Resistance Training , Adult , Age Factors , Diet , Dietary Proteins/pharmacology , Dietary Supplements , Feeding Behavior/physiology , Female , Humans , Male , Middle Aged , Resistance Training/methods , Time Factors
4.
J Appl Physiol (1985) ; 127(6): 1651-1659, 2019 12 01.
Article in English | MEDLINE | ID: mdl-31622159

ABSTRACT

Carbohydrate (CHO) ingestion is an established strategy to improve endurance performance. Race fuels should not only sustain performance but also be readily digested and absorbed. Potatoes are a whole-food-based option that fulfills these criteria, yet their impact on performance remains unexamined. We investigated the effects of potato purée ingestion during prolonged cycling on subsequent performance vs. commercial CHO gel or a water-only condition. Twelve cyclists (70.7 ± 7.7 kg, 173 ± 8 cm, 31 ± 9 yr, 22 ± 5.1% body fat; means ± SD) with average peak oxygen consumption (V̇o2peak) of 60.7 ± 9.0 mL·kg-1·min-1 performed a 2-h cycling challenge (60-85% V̇o2peak) followed by a time trial (TT; 6 kJ/kg body mass) while consuming potato, gel, or water in a randomized-crossover design. The race fuels were administered with [U-13C6]glucose for an indirect estimate of gastric emptying rate. Blood samples were collected throughout the trials. Blood glucose concentrations were higher (P < 0.001) in potato and gel conditions compared with water condition. Blood lactate concentrations were higher (P = 0.001) after the TT completion in both CHO conditions compared with water condition. TT performance was improved (P = 0.032) in both potato (33.0 ± 4.5 min) and gel (33.0 ± 4.2 min) conditions compared with water condition (39.5 ± 7.9 min). Moreover, no difference was observed in TT performance between CHO conditions (P = 1.00). In conclusion, potato and gel ingestion equally sustained blood glucose concentrations and TT performance. Our results support the effective use of potatoes to support race performance for trained cyclists.NEW & NOTEWORTHY The ingestion of concentrated carbohydrate gels during prolonged exercise has been shown to promote carbohydrate availability and improve exercise performance. Our study aim was to expand and diversify race fueling menus for athletes by providing an evidence-based whole-food alternative to the routine ingestion of gels during training and competition. Our work shows that russet potato ingestion during prolonged cycling is as effective as carbohydrate gels to support exercise performance in trained athletes.


Subject(s)
Athletic Performance/physiology , Bicycling/physiology , Dietary Carbohydrates/administration & dosage , Solanum tuberosum , Adult , Blood Glucose , Digestion , Female , Humans , Male , Physical Exertion , Young Adult
5.
Int J Sport Nutr Exerc Metab ; 29(2): 220-227, 2019 Mar 01.
Article in English | MEDLINE | ID: mdl-30632423

ABSTRACT

Adolescent, female, and masters athletes have unique nutritional requirements as a consequence of undertaking daily training and competition in addition to the specific demands of age- and gender-related physiological changes. Dietary education and recommendations for these special population athletes require a focus on eating for long-term health, with special consideration given to "at-risk" dietary patterns and nutrients (e.g., sustained restricted eating, low calcium, vitamin D and/or iron intakes relative to requirements). Recent research highlighting strategies to address age-related changes in protein metabolism and the development of tools to assist in the management of Relative Energy Deficiency in Sport are of particular relevance to special population athletes. Whenever possible, special population athletes should be encouraged to meet their nutrient needs by the consumption of whole foods rather than supplements. The recommendation of dietary supplements (particularly to young athletes) overemphasizes their ability to manipulate performance in comparison with other training/dietary strategies.


Subject(s)
Athletes , Nutritional Requirements , Sports Nutritional Physiological Phenomena , Adolescent , Diet , Female , Humans
6.
Am J Physiol Endocrinol Metab ; 311(6): E964-E973, 2016 12 01.
Article in English | MEDLINE | ID: mdl-27780822

ABSTRACT

Protein ingestion before sleep augments postexercise muscle protein synthesis during overnight recovery. It is unknown whether postexercise and presleep protein consumption modulates postprandial protein handling and myofibrillar protein synthetic responses the following morning. Sixteen healthy young (24 ± 1 yr) men performed unilateral resistance-type exercise (contralateral leg acting as a resting control) at 2000. Participants ingested 20 g of protein immediately after exercise plus 60 g of protein presleep (PRO group; n = 8) or equivalent boluses of carbohydrate (CON; n = 8). The subsequent morning participants received primed, continuous infusions of l-[ring-2H5]phenylalanine and l-[1-13C]leucine combined with ingestion of 20 g intrinsically l-[1-13C]phenylalanine- and l-[1-13C]leucine-labeled protein to assess postprandial protein handling and myofibrillar protein synthesis in the rested and exercised leg in CON and PRO. Exercise increased postabsorptive myofibrillar protein synthesis rates the subsequent day (P < 0.001), with no differences between CON and PRO. Protein ingested in the morning increased myofibrillar protein synthesis in both the exercised and rested leg (P < 0.01), with no differences between treatments. Myofibrillar protein bound l-[1-13C]phenylalanine enrichments were greater in the exercised (0.016 ± 0.002 and 0.015 ± 0.002 MPE in CON and PRO, respectively) vs. rested (0.010 ± 0.002 and 0.009 ± 0.002 MPE in CON and PRO, respectively) leg (P < 0.05), with no differences between treatments (P > 0.05). The additive effects of resistance-type exercise and protein ingestion on myofibrillar protein synthesis persist for more than 12 h after exercise and are not modulated by protein consumption during acute postexercise recovery. This work provides evidence of an extended window of opportunity where presleep protein supplementation can be an effective nutrient timing strategy to optimize skeletal muscle reconditioning.


Subject(s)
Dietary Proteins/pharmacology , Exercise/physiology , Muscle Proteins/biosynthesis , Muscle, Skeletal/drug effects , Protein Biosynthesis/drug effects , Resistance Training , Sleep , Adult , Carbon Isotopes , Deuterium , Dietary Carbohydrates/pharmacology , Healthy Volunteers , Humans , Leucine/metabolism , Male , Muscle Proteins/drug effects , Muscle, Skeletal/metabolism , Phenylalanine/metabolism , Young Adult
7.
Am J Physiol Endocrinol Metab ; 303(5): E614-23, 2012 Sep 01.
Article in English | MEDLINE | ID: mdl-22739107

ABSTRACT

Physical activity is required to attenuate the loss of skeletal muscle mass with aging. Short periods of muscle disuse, due to sickness or hospitalization, reduce muscle protein synthesis rates, resulting in rapid muscle loss. The present study investigates the capacity of neuromuscular electrical stimulation (NMES) to increase in vivo skeletal muscle protein synthesis rates in older type 2 diabetes patients. Six elderly type 2 diabetic men (70 ± 2 yr) were subjected to 60 min of one-legged NMES. Continuous infusions with L-[ring-¹³C6]phenylalanine were applied, with blood and muscle samples being collected regularly to assess muscle protein synthesis rates in both the stimulated (STIM) and nonstimulated control (CON) leg during 4 h of recovery after NMES. Furthermore, mRNA expression of key genes implicated in the regulation of muscle mass were measured over time in the STIM and CON leg. Muscle protein synthesis rates were greater in the STIM compared with the CON leg during recovery from NMES (0.057 ± 0.008 vs. 0.045 ± 0.008%/h, respectively, P < 0.01). Skeletal muscle myostatin mRNA expression in the STIM leg tended to increase immediately following NMES compared with the CON leg (1.63- vs. 1.00-fold, respectively, P = 0.07) but strongly declined after 2 and 4 h of recovery in the STIM leg only. In conclusion, this is the first study to show that NMES directly stimulates skeletal muscle protein synthesis rates in vivo in humans. NMES likely represents an effective interventional strategy to attenuate muscle loss in elderly individuals during bed rest and/or in other disuse states.


Subject(s)
Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/therapy , Electric Stimulation Therapy , Muscle Proteins/biosynthesis , Neuromuscular Junction/physiopathology , Quadriceps Muscle/metabolism , Sarcopenia/prevention & control , Aged , Atrophy/etiology , Atrophy/metabolism , Atrophy/pathology , Atrophy/prevention & control , Bed Rest/adverse effects , Biopsy, Needle , Carbon Isotopes , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/pathology , Electric Stimulation Therapy/methods , Gene Expression Regulation , Humans , Immobilization/adverse effects , Kinetics , Male , Muscle Proteins/genetics , Myostatin/biosynthesis , Myostatin/genetics , Phenylalanine/blood , Phenylalanine/metabolism , Quadriceps Muscle/pathology , Quadriceps Muscle/physiopathology , RNA, Messenger/metabolism , Sarcopenia/complications , Sarcopenia/etiology
8.
J Physiol ; 590(11): 2751-65, 2012 Jun 01.
Article in English | MEDLINE | ID: mdl-22451437

ABSTRACT

Leucine is a nutrient regulator of muscle protein synthesis by activating mTOR and possibly other proteins in this pathway. The purpose of this study was to examine the role of leucine in the regulation of human myofibrillar protein synthesis (MPS). Twenty-four males completed an acute bout of unilateral resistance exercise prior to consuming either: a dose (25 g) of whey protein (WHEY); 6.25 g whey protein with total leucine equivalent to WHEY (LEU); or 6.25 g whey protein with total essential amino acids (EAAs) equivalent to WHEY for all EAAs except leucine (EAA-LEU). Measures of MPS, signalling through mTOR, and amino acid transporter (AAT) mRNA abundance were made while fasted (FAST), and following feeding under rested (FED) and post-exercise (EX-FED) conditions. Leucinaemia was equivalent between WHEY and LEU and elevated compared to EAA-LEU (P=0.001). MPS was increased above FAST at 1­3 h post-exercise in both FED (P <0.001) and EX-FED (P <0.001) conditions with no treatment effect.At 3­5 h, only WHEY remained significantly elevated above FAST in EX-FED(WHEY 184% vs. LEU 55% and EAA-LEU 35%; P =0.036). AAT mRNA abundance was increased above FAST after feeding and exercise with no effect of leucinaemia. In summary, a low dose of whey protein supplemented with leucine or all other essential amino acids was as effective as a complete protein (WHEY) in stimulating postprandial MPS; however only WHEY was able to sustain increased rates of MPS post-exercise and may therefore be most suited to increase exercise-induced muscle protein accretion.


Subject(s)
Amino Acids, Essential/administration & dosage , Dietary Supplements , Milk Proteins/administration & dosage , Muscle Proteins/metabolism , Myofibrils/metabolism , Adult , Amino Acids/blood , Amino Acids, Essential/blood , Amino Acids, Essential/pharmacokinetics , Blood Glucose/analysis , Exercise/physiology , Humans , Insulin/blood , Male , Protein Biosynthesis , Whey Proteins , Young Adult
9.
Br J Nutr ; 108(10): 1780-8, 2012 Nov 28.
Article in English | MEDLINE | ID: mdl-22313809

ABSTRACT

Feeding stimulates robust increases in muscle protein synthesis (MPS); however, ageing may alter the anabolic response to protein ingestion and the subsequent aminoacidaemia. With this as background, we aimed to determine in the present study the dose-response of MPS with the ingestion of isolated whey protein, with and without prior resistance exercise, in the elderly. For the purpose of this study, thirty-seven elderly men (age 71 (sd 4) years) completed a bout of unilateral leg-based resistance exercise before ingesting 0, 10, 20 or 40 g of whey protein isolate (W0-W40, respectively). Infusion of l-[1-13C]leucine and l-[ring-13C6]phenylalanine with bilateral vastus lateralis muscle biopsies were used to ascertain whole-body leucine oxidation and 4 h post-protein consumption of MPS in the fed-state of non-exercised and exercised leg muscles. It was determined that whole-body leucine oxidation increased in a stepwise, dose-dependent manner. MPS increased above basal, fasting values by approximately 65 and 90 % for W20 and W40, respectively (P < 0·05), but not with lower doses of whey. While resistance exercise was generally effective at stimulating MPS, W20 and W40 ingestion post-exercise increased MPS above W0 and W10 exercised values (P < 0·05) and W40 was greater than W20 (P < 0·05). Based on the study, the following conclusions were drawn. At rest, the optimal whey protein dose for non-frail older adults to consume, to increase myofibrillar MPS above fasting rates, was 20 g. Resistance exercise increases MPS in the elderly at all protein doses, but to a greater extent with 40 g of whey ingestion. These data suggest that, in contrast to younger adults, in whom post-exercise rates of MPS are saturated with 20 g of protein, exercised muscles of older adults respond to higher protein doses.


Subject(s)
Dietary Supplements , Exercise/physiology , Gene Expression Regulation/drug effects , Milk Proteins/pharmacology , Myofibrils/metabolism , Aged , Amino Acids , Carbon Isotopes , Diet , Food Analysis , Humans , Insulin/blood , Male , Myofibrils/genetics , Whey Proteins
10.
Br J Nutr ; 108(6): 958-62, 2012 Sep 28.
Article in English | MEDLINE | ID: mdl-22289570

ABSTRACT

We aimed to determine the effect of consuming pure isolated micellar casein or pure whey protein isolate on rates of myofibrillar protein synthesis (MPS) at rest and after resistance exercise in elderly men. Healthy elderly men (72 (sem 1) years; BMI 26·4 (sem 0·7) kg/m²) were divided into two groups (n 7 each) who received a primed, constant infusion of l-[ring-¹³C6]phenylalanine to measure MPS at rest and during 4 h of exercise recovery. Participants performed unilateral leg resistance exercise followed by the consumption of isonitrogenous quantities (20 g) of casein or whey. Blood essential amino acids and leucine concentration peaked 60 min post-drink and were greater in amplitude after whey protein ingestion (both, P < 0·05). MPS in the rested leg was 65 % higher (P = 0·002) after ingestion of whey (0·040 (sem 0·003) %/h) when compared with micellar casein (0·024 (sem 0·002) %/h). Similarly, resistance exercise-stimulated rates of MPS were greater (P < 0·001) after whey ingestion (0·059 (sem 0·005) %/h) v. micellar casein (0·035 (sem 0·002) %/h). We conclude that ingestion of isolated whey protein supports greater rates of MPS than micellar casein both at rest and after resistance exercise in healthy elderly men. This result is probably related to a greater hyperaminoacidaemia or leucinaemia with whey ingestion.


Subject(s)
Aging/metabolism , Caseins/metabolism , Dietary Supplements , Milk Proteins/metabolism , Muscle Proteins/biosynthesis , Myofibrils/metabolism , Resistance Training , Aged , Aging/blood , Amino Acids/blood , Biopsy, Needle , Carbon Isotopes , Humans , Kinetics , Male , Micelles , Quadriceps Muscle/metabolism , Sarcopenia/prevention & control , Whey Proteins
SELECTION OF CITATIONS
SEARCH DETAIL