Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters

Therapeutic Methods and Therapies TCIM
Database
Country/Region as subject
Language
Publication year range
1.
Am J Chin Med ; 45(3): 599-614, 2017.
Article in English | MEDLINE | ID: mdl-28385077

ABSTRACT

Abundant evidence supports the key role of ultraviolet radiation (UVR) in skin cancer development. The human skin, especially the epidermal layer, is the main defense against UV radiation. Baicalin is a major bioactive component of Scutellaria baicalensis Georgi, a plant which has been found to exhibit antitumor activity. The anticarcinogenic mechanism of baicalin is not completely understood. We have reported that baicalin inhibited UVB-induced photo-damage and apoptosis in HaCaT cells (human skin keratinocytes). The aim of the present study is to investigate the cellular gene targets responsible for baicalin's antitumor activity by performing two-dimensional electrophoresis liquid chromatography-mass spectrometry/mass spectrometry (2-DE LC-MS/MS) with HaCaT cells following UVB and baicalin exposure. Two-DE for protein separation was performed, followed by matrix-assisted laser desorption/ionization mass spectrometry and database searches. Nucleophosmin (NPM)-specific siRNA was designed and synthesized, and the small interfering RNA was transfected into skin squamous cancer A431 cells to knockdown the NPM expression. Proliferation and cell cycle status were assessed by CCK8 and flow cytometric analyses, respectively. We have identified 38 protein spots that are differentially expressed in HaCaT cells exposed to baicalin and/or UVB irradiation These proteins are involved in detoxification, proliferation, metabolism, cytoskeleton and motility. In particular, we found several proteins that have been linked to tumor progression and resistance, such as NPM. Baicalin treatment reduced the cellular proliferation rate and induced arrest during the S-phase of the cell cycle in A431 cells. NPM1 silencing significantly enhanced the effect of baicalin. Our data indicated that baicalin results in the significant inhibition of tumor growth in the A431 cell line, which may be associated with the regulation of the NPM gene expression.


Subject(s)
Antineoplastic Agents, Phytogenic , Flavonoids/genetics , Flavonoids/pharmacology , Phytotherapy , Proteomics , Skin Neoplasms/drug therapy , Skin Neoplasms/pathology , Apoptosis/drug effects , Cell Cycle/drug effects , Cell Proliferation/drug effects , Cell Proliferation/genetics , Cell Transformation, Neoplastic/drug effects , Flavonoids/therapeutic use , Humans , Molecular Targeted Therapy , Nucleophosmin , RNA Interference/drug effects , RNA, Small Interfering , Scutellaria baicalensis/chemistry , Skin Neoplasms/genetics , Tumor Cells, Cultured
2.
Mov Disord ; 32(5): 739-749, 2017 05.
Article in English | MEDLINE | ID: mdl-28195358

ABSTRACT

BACKGROUND: There is mounting evidence for a connection between the gut and Parkinson's disease (PD). Dysbiosis of gut microbiota could explain several features of PD. OBJECTIVE: The objective of this study was to determine if PD involves dysbiosis of gut microbiome, disentangle effects of confounders, and identify candidate taxa and functional pathways to guide research. METHODS: A total of 197 PD cases and 130 controls were studied. Microbial composition was determined by 16S rRNA gene sequencing of DNA extracted from stool. Metadata were collected on 39 potential confounders including medications, diet, gastrointestinal symptoms, and demographics. Statistical analyses were conducted while controlling for potential confounders and correcting for multiple testing. We tested differences in the overall microbial composition, taxa abundance, and functional pathways. RESULTS: Independent microbial signatures were detected for PD (P = 4E-5), participants' region of residence within the United States (P = 3E-3), age (P = 0.03), sex (P = 1E-3), and dietary fruits/vegetables (P = 0.01). Among patients, independent signals were detected for catechol-O-methyltransferase-inhibitors (P = 4E-4), anticholinergics (P = 5E-3), and possibly carbidopa/levodopa (P = 0.05). We found significantly altered abundances of the Bifidobacteriaceae, Christensenellaceae, [Tissierellaceae], Lachnospiraceae, Lactobacillaceae, Pasteurellaceae, and Verrucomicrobiaceae families. Functional predictions revealed changes in numerous pathways, including the metabolism of plant-derived compounds and xenobiotics degradation. CONCLUSION: PD is accompanied by dysbiosis of gut microbiome. Results coalesce divergent findings of prior studies, reveal altered abundance of several taxa, nominate functional pathways, and demonstrate independent effects of PD medications on the microbiome. The findings provide new leads and testable hypotheses on the pathophysiology and treatment of PD. © 2017 International Parkinson and Movement Disorder Society.


Subject(s)
Antiparkinson Agents/therapeutic use , Catechol O-Methyltransferase Inhibitors/therapeutic use , Cholinergic Antagonists/therapeutic use , Dysbiosis/epidemiology , Gastrointestinal Microbiome/genetics , Parkinson Disease/epidemiology , Age Factors , Bifidobacterium/genetics , Carbidopa/therapeutic use , Case-Control Studies , Confounding Factors, Epidemiologic , Diet , Drug Combinations , Dysbiosis/microbiology , Female , Fruit , Humans , Lactobacillaceae/genetics , Levodopa/therapeutic use , Male , Parkinson Disease/drug therapy , Parkinson Disease/microbiology , Pasteurellaceae/genetics , RNA, Ribosomal, 16S/genetics , Risk Factors , Sex Factors , United States/epidemiology , Vegetables , Verrucomicrobia/genetics
3.
Photochem Photobiol ; 91(1): 201-9, 2015.
Article in English | MEDLINE | ID: mdl-25378147

ABSTRACT

Vitamin D signaling plays a key role in many important processes, including cellular proliferation, differentiation and apoptosis, immune regulation, hormone secretion and skeletal health. Furthermore, vitamin D production and supplementation have been shown to exert protective effects via an unknown signaling mechanism involving the vitamin D receptor (VDR) in several diseases and cancer types, including skin cancer. With over 3.5 million new diagnoses in 2 million patients annually, skin cancer is the most common cancer type in the United States. While ultraviolet B (UVB) radiation is the main etiologic factor for nonmelanoma skin cancer (NMSC), UVB also induces cutaneous vitamin D production. This paradox has been the subject of contradictory findings in the literature in regards to amount of sun exposure necessary for appropriate vitamin D production, as well as any beneficial or detrimental effects of vitamin D supplementation for disease prevention. Further clinical and epidemiological studies are necessary to elucidate the role of vitamin D in skin carcinogenesis.


Subject(s)
Skin Neoplasms/metabolism , Vitamin D/metabolism , Humans , Melanoma/genetics , Melanoma/metabolism , Polymorphism, Genetic , Receptors, Calcitriol/genetics , Skin Neoplasms/genetics
5.
PLoS Genet ; 7(8): e1002237, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21876681

ABSTRACT

Our aim was to identify genes that influence the inverse association of coffee with the risk of developing Parkinson's disease (PD). We used genome-wide genotype data and lifetime caffeinated-coffee-consumption data on 1,458 persons with PD and 931 without PD from the NeuroGenetics Research Consortium (NGRC), and we performed a genome-wide association and interaction study (GWAIS), testing each SNP's main-effect plus its interaction with coffee, adjusting for sex, age, and two principal components. We then stratified subjects as heavy or light coffee-drinkers and performed genome-wide association study (GWAS) in each group. We replicated the most significant SNP. Finally, we imputed the NGRC dataset, increasing genomic coverage to examine the region of interest in detail. The primary analyses (GWAIS, GWAS, Replication) were performed using genotyped data. In GWAIS, the most significant signal came from rs4998386 and the neighboring SNPs in GRIN2A. GRIN2A encodes an NMDA-glutamate-receptor subunit and regulates excitatory neurotransmission in the brain. Achieving P(2df) = 10(-6), GRIN2A surpassed all known PD susceptibility genes in significance in the GWAIS. In stratified GWAS, the GRIN2A signal was present in heavy coffee-drinkers (OR = 0.43; P = 6×10(-7)) but not in light coffee-drinkers. The a priori Replication hypothesis that "Among heavy coffee-drinkers, rs4998386_T carriers have lower PD risk than rs4998386_CC carriers" was confirmed: OR(Replication) = 0.59, P(Replication) = 10(-3); OR(Pooled) = 0.51, P(Pooled) = 7×10(-8). Compared to light coffee-drinkers with rs4998386_CC genotype, heavy coffee-drinkers with rs4998386_CC genotype had 18% lower risk (P = 3×10(-3)), whereas heavy coffee-drinkers with rs4998386_TC genotype had 59% lower risk (P = 6×10(-13)). Imputation revealed a block of SNPs that achieved P(2df)<5×10(-8) in GWAIS, and OR = 0.41, P = 3×10(-8) in heavy coffee-drinkers. This study is proof of concept that inclusion of environmental factors can help identify genes that are missed in GWAS. Both adenosine antagonists (caffeine-like) and glutamate antagonists (GRIN2A-related) are being tested in clinical trials for treatment of PD. GRIN2A may be a useful pharmacogenetic marker for subdividing individuals in clinical trials to determine which medications might work best for which patients.


Subject(s)
Coffee , Gene-Environment Interaction , Parkinson Disease/genetics , Receptors, N-Methyl-D-Aspartate/genetics , Case-Control Studies , Female , Genetic Predisposition to Disease , Genome, Human , Genome-Wide Association Study , Genotype , Humans , Male , Polymorphism, Single Nucleotide , Risk Factors
SELECTION OF CITATIONS
SEARCH DETAIL