Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Nat Prod Commun ; 9(4): 455-8, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24868853

ABSTRACT

Butyrylcholinesterase (BChE) inhibitors were identified from a collection containing cinchonine, cinchonidine and synthetic derivatives, and further characterized using cytotoxicity and molecular docking studies. The most active ones were: (10 triple bond)-10,11-dibromo-10,11-dihydrocinchonidine (11), a competitive inhibitor with Ki = 3.45 +/- 0.39 microM, and IC50 BChE = 9.83 +/- 0.30 microM/human (h)BChE = 34.47 +/- 4.63 and O-(trimethylsilyl)cinchonine (15), a mixed inhibitor with Kiuc = 1.73 +/- 0.46 microM and Kic = 0.85 +/- 0.26 microM, and IC50 BChE = 0.56 +/- 0.14 microM/hBChE = 0.24 +/- 0.04. In cytotoxicity experiments, > or = 80% of the cells remained viable when exposed to concentrations of up to 80 microM of both inhibitors in four different cell lines, including neurons. Due to the bulkier trimethylsilyl side group of 15, it covered the active site of hBChE better than 11 with an OH-group while not being able to fit into the active site gorge of hAChE, thus explaining the selectivity of 15 towards hBChE.


Subject(s)
Cholinesterase Inhibitors/chemistry , Cholinesterase Inhibitors/pharmacology , Cinchona Alkaloids/chemistry , Cinchona Alkaloids/pharmacology , Butyrylcholinesterase , Cinchona/chemistry , Humans , Molecular Structure , Plant Bark/chemistry , Plant Stems/chemistry , Structure-Activity Relationship
2.
Nat Prod Commun ; 7(9): 1173-6, 2012 Sep.
Article in English | MEDLINE | ID: mdl-23074900

ABSTRACT

Bacterial biofilms are resistant to most of the commonly available antibacterial chemotherapies. Thus, an enormous need exists to meet the demands of effective anti-biofilm therapy. In this study, a small library of cinchona alkaloids, including the naturally occurring compounds cinchonidine and cinchonine, as well as various synthetic derivatives and analogues was screened for antibacterial and anti-biofilm activity against the Staphylococcus aureus biofilm producing strain ATCC 25923. Two methods were used to evaluate activity against biofilms, namely crystal violet staining to measure biomass and resazurin assay to measure biofilms viability. Cinchonidine was found to be inactive, whereas a synthetic derivative, 11-triphenylsilyl-10,11-dihydrocinchonidine (11-TPSCD), was effective against planktonic bacteria as well as in preventing biofilm formation at low micromolar concentrations. Higher concentrations were required to eradicate mature biofilms.


Subject(s)
Anti-Bacterial Agents/pharmacology , Biofilms/drug effects , Cinchona Alkaloids/pharmacology , Staphylococcus aureus/drug effects , Staphylococcus aureus/physiology
SELECTION OF CITATIONS
SEARCH DETAIL