Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Therapeutic Methods and Therapies TCIM
Database
Language
Affiliation country
Publication year range
1.
Bioengineered ; 14(1): 2244235, 2023 12.
Article in English | MEDLINE | ID: mdl-37598369

ABSTRACT

Antibody-drug conjugates (ADCs) can improve therapeutic indices compared to plain monoclonal antibodies (mAbs). However, ADC synthesis is complex because the components are produced separately in CHO cells (mAb) and often by chemical synthesis (drug). They are individually purified, coupled, and then the ADC is purified, increasing production costs compared to regular mAbs. In contrast, it is easier to produce recombinant fusion proteins consisting of an antibody derivative, linker and proteinaceous toxin, i.e. a recombinant immunotoxin (RIT). Plants are capable of the post-translational modifications needed for functional antibodies and can also express active protein toxins such as the recombinant mistletoe lectin viscumin, which is not possible in prokaryotes and mammalian cells respectively. Here, we used Nicotiana benthamiana and N. tabacum plants as well as tobacco BY-2 cell-based plant cell packs (PCPs) to produce effective RITs targeting CD64 as required for the treatment of myelomonocytic leukemia. We compared RITs with different subcellular targeting signals, linkers, and proteinaceous toxins. The accumulation of selected candidates was improved to ~ 40 mg kg-1 wet biomass using a design of experiments approach, and corresponding proteins were isolated with a purity of ~ 80% using an optimized affinity chromatography method with an overall yield of ~ 84%. One anti-CD64 targeted viscumin-based drug candidate was characterized in terms of storage stability and cytotoxicity test in vitro using human myelomonocytic leukemia cell lines. We identified bottlenecks in the plant-based expression platform that require further improvement and assessed critical process parameters that should be considered during process development for plant-made RITs.


Toxin type and domain sequence affect accumulation of recombinant immunotoxins.Transient expression in plant cell packs and intact plants correlates well.IC50 values of toxicity correlate with the cell surface receptor concentration.


Subject(s)
Immunotoxins , Leukemia , Animals , Humans , Cricetinae , Immunotoxins/genetics , Immunotoxins/pharmacology , Cricetulus , Plant Cells , Nicotiana/genetics , Antibodies, Monoclonal/genetics , CHO Cells
2.
Protein Expr Purif ; 152: 122-130, 2018 12.
Article in English | MEDLINE | ID: mdl-30059744

ABSTRACT

Plants as a platform for recombinant protein expression are now economically comparable to well-established systems, such as microbes and mammalian cells, thanks to advantages such as scalability and product safety. However, downstream processing accounts for the majority of the final product costs because plant extracts contain large quantities of host cell proteins (HCPs) that must be removed using elaborate purification strategies. Heat precipitation in planta (blanching) can remove ∼80% of HCPs and thus simplify further purification steps, but this is only possible if the target protein is thermostable. Here we describe a combination of blanching and chromatography to purify the thermostable transmission-blocking malaria vaccine candidate FQS, which was transiently expressed in Nicotiana benthamiana leaves. If the blanching temperature exceeded a critical threshold of ∼75 °C, FQS was no longer recognized by the malaria transmission-blocking monoclonal antibody 4B7. A design-of-experiments approach revealed that reducing the blanching temperature from 80 °C to 70 °C restored antibody binding while still precipitating most HCPs. We also found that blanching inhibited the degradation of FQS in plant extracts, probably due to the thermal inactivation of proteases. We screened hydrophobic interaction chromatography materials using miniature columns and a liquid-handling station. Octyl Sepharose achieved the highest FQS purity during the primary capture step and led to a final purity of ∼72% with 60% recovery via step elution. We found that 30-75% FQS was lost during ultrafiltration/diafiltration, giving a final yield of 9 mg kg-1 plant material after purification based on an initial yield of ∼49 mg kg-1 biomass after blanching.


Subject(s)
Antibodies, Monoclonal/chemistry , Antibodies, Protozoan/chemistry , Malaria Vaccines/isolation & purification , Nicotiana/genetics , Plant Proteins/isolation & purification , Protozoan Proteins/isolation & purification , Antibodies, Monoclonal/metabolism , Antibodies, Protozoan/metabolism , Chromatography, Affinity/methods , Cloning, Molecular , Factor Analysis, Statistical , Gene Expression , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Hot Temperature , Malaria Vaccines/biosynthesis , Malaria Vaccines/genetics , Plant Leaves/genetics , Plant Leaves/metabolism , Plant Proteins/chemistry , Plants, Genetically Modified , Protein Binding , Protein Denaturation , Protozoan Proteins/biosynthesis , Protozoan Proteins/genetics , Recombinant Proteins/biosynthesis , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Sepharose/analogs & derivatives , Nicotiana/chemistry , Nicotiana/metabolism , Ultrafiltration/methods
3.
Biotechnol J ; 11(4): 507-18, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26632519

ABSTRACT

The production of biopharmaceutical proteins in plants requires efficient downstream processing steps that remove impurities such as host cell proteins (HCPs) and adventitious endotoxins produced by bacteria during transient expression. We therefore strived to develop effective routines for endotoxin removal from plant extracts and the subsequent use of the extracts to generate antibodies detecting a broad set of HCPs. At first, we depleted the superabundant protein ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) for which PEG precipitation achieved the best results, preventing a dominant immune reaction against this protein. We found that a mixture of sera from rabbits immunized with pre-depleted or post-depleted extracts detected more HCPs than the individual sera used alone. We also developed a powerful endotoxin removal procedure using Polymyxin B for extracts from wild type plants or a combination of fiber-flow filtration and EndoTrap Blue for tobacco plants infiltrated with Agrobacterium tumefaciens. The antibodies we generated will be useful for quality and performance assessment in future process development and the methods we present can easily be transferred to other expression systems rendering them useful in the field of plant molecular farming.


Subject(s)
Antibodies, Monoclonal/metabolism , Nicotiana/genetics , Plant Extracts/immunology , Polymyxin B/isolation & purification , Ribulose-Bisphosphate Carboxylase/deficiency , Agrobacterium tumefaciens/metabolism , Animals , Antibody Specificity , Endotoxins , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Plants, Genetically Modified/enzymology , Plants, Genetically Modified/microbiology , Rabbits , Nicotiana/immunology , Nicotiana/microbiology
4.
Bioengineered ; 5(2): 138-42, 2014.
Article in English | MEDLINE | ID: mdl-24637706

ABSTRACT

All biological platforms for the manufacture of biopharmaceutical proteins produce an initially turbid extract that must be clarified to avoid fouling sensitive media such as chromatography resins. Clarification is more challenging if the feed stream contains large amounts of dispersed particles, because these rapidly clog the filter media typically used to remove suspended solids. Charged polymers (flocculants) can increase the apparent size of the dispersed particles by aggregation, facilitating the separation of solids and liquids, and thus reducing process costs. However, many different factors can affect the behavior of flocculants, including the pH and conductivity of the medium, the size and charge distribution of the particulates, and the charge density and molecular mass of the polymer. Importantly, these properties can also affect the recovery of the target protein and the overall safety profile of the process. We therefore used a design of experiments approach to establish reliable predictive models that characterize the impact of flocculants during the downstream processing of biopharmaceutical proteins. We highlight strategies for the selection of flocculants during process optimization. These strategies will contribute to the quality by design aspects of process development and facilitate the development of safe and efficient downstream processes for plant-derived pharmaceutical proteins.


Subject(s)
Drug Compounding/methods , Plant Extracts/isolation & purification , Plant Proteins/chemistry , Plant Proteins/isolation & purification , Technology, Pharmaceutical/methods , Ultrafiltration/methods , Biological Products/chemistry , Biological Products/isolation & purification , Biopharmaceutics/methods , Flocculation
SELECTION OF CITATIONS
SEARCH DETAIL