Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Therapeutic Methods and Therapies TCIM
Database
Type of study
Language
Affiliation country
Publication year range
1.
Nat Prod Res ; 36(22): 5889-5893, 2022 Nov.
Article in English | MEDLINE | ID: mdl-34969332

ABSTRACT

The current study was aimed to examine the effect of grape seed proanthocyanidin extract (GSPE) on regulating lipid metabolism of American eels. A total of six cement tanks of fish were randomly divided into a control group fed with a commercial diet and a GSPE group fed with a commercial diet supplemented 400 mg/kg GSPE. There were three replicates in each group. Results suggested that GSPE could decrease the levels of total cholesterol, triglycerides, and low-density lipoprotein cholesterol, and increase the high-density lipoprotein cholesterol level in serum. GSPE might regulate lipid metabolism through upregulating linoleic acid metabolism and arachidonic acid metabolism along with downregulating metabolisms of phenylalanine, tyrosine, and tryptophan biosynthesis and valine, leucine, and isoleucine biosynthesis.


Subject(s)
Anguilla , Grape Seed Extract , Proanthocyanidins , Animals , Anguilla/metabolism , Cholesterol/metabolism , Lipid Metabolism
2.
FASEB J ; 34(5): 6688-6702, 2020 05.
Article in English | MEDLINE | ID: mdl-32212192

ABSTRACT

Mitochondrial aconitase (Aco2) catalyzes the conversion of citrate to isocitrate in the TCA cycle, which produces NADH and FADH2, driving synthesis of ATP through OXPHOS. In this study, to explore the relationship between adipogenesis and mitochondrial energy metabolism, we hypothesize that Aco2 may play a key role in the lipid synthesis. Here, we show that overexpression of Aco2 in 3T3-L1 cells significantly increased lipogenesis and adipogenesis, accompanied by elevated mitochondrial biogenesis and ATP production. However, when ATP is depleted by rotenone, an inhibitor of the respiratory chain, the promotive role of Aco2 in adipogenesis is abolished. In contrast to Aco2 overexpression, deficiency of Aco2 markedly reduced lipogenesis and adipogenesis, along with the decreased mitochondrial biogenesis and ATP production. Supplementation of isocitrate efficiently rescued the inhibitory effect of Aco2 deficiency. Similarly, the restorative effect of isocitrate was abolished in the presence of rotenone. Together, these results show that Aco2 sustains normal adipogenesis through mediating ATP production, revealing a potential mechanistic link between TCA cycle enzyme and lipid synthesis. Our work suggest that regulation of adipose tissue mitochondria function may be a potential way for combating abnormal adipogenesis related diseases such as obesity and lipodystrophy.


Subject(s)
Aconitate Hydratase/metabolism , Adenosine Triphosphate/metabolism , Adipogenesis , Adipose Tissue/cytology , Mitochondria/enzymology , 3T3-L1 Cells , Aconitate Hydratase/genetics , Adipose Tissue/metabolism , Animals , Male , Mice , Mice, Inbred C57BL
3.
PLoS Biol ; 18(3): e3000688, 2020 03.
Article in English | MEDLINE | ID: mdl-32218572

ABSTRACT

Obesity leads to multiple health problems, including diabetes, fatty liver, and even cancer. Here, we report that urolithin A (UA), a gut-microflora-derived metabolite of pomegranate ellagitannins (ETs), prevents diet-induced obesity and metabolic dysfunctions in mice without causing adverse effects. UA treatment increases energy expenditure (EE) by enhancing thermogenesis in brown adipose tissue (BAT) and inducing browning of white adipose tissue (WAT). Mechanistically, UA-mediated increased thermogenesis is caused by an elevation of triiodothyronine (T3) levels in BAT and inguinal fat depots. This is also confirmed in UA-treated white and brown adipocytes. Consistent with this mechanism, UA loses its beneficial effects on activation of BAT, browning of white fat, body weight control, and glucose homeostasis when thyroid hormone (TH) production is blocked by its inhibitor, propylthiouracil (PTU). Conversely, administration of exogenous tetraiodothyronine (T4) to PTU-treated mice restores UA-induced activation of BAT and browning of white fat and its preventive role on high-fat diet (HFD)-induced weight gain. Together, these results suggest that UA is a potent antiobesity agent with potential for human clinical applications.


Subject(s)
Adipose Tissue, Brown/metabolism , Anti-Obesity Agents/therapeutic use , Coumarins/therapeutic use , Obesity/prevention & control , Adipocytes, Brown/drug effects , Adipocytes, Brown/metabolism , Adipocytes, White/drug effects , Adipocytes, White/metabolism , Adipose Tissue, White/metabolism , Animals , Diet, High-Fat/adverse effects , Energy Metabolism/drug effects , Fatty Liver/prevention & control , Glucose Intolerance/prevention & control , Insulin Resistance , Maillard Reaction , Male , Mice , Mice, Inbred C57BL , Mice, Obese , Obesity/metabolism , Propylthiouracil/toxicity , Thermogenesis , Triiodothyronine/antagonists & inhibitors , Triiodothyronine/metabolism , Weight Gain/drug effects
4.
Cells ; 9(2)2020 01 31.
Article in English | MEDLINE | ID: mdl-32023857

ABSTRACT

The prevalence of obesity has increased dramatically worldwide in the past ~50 years. Searching for safe and effective anti-obesity strategies are urgently needed. Lactucin, a plant-derived natural small molecule, is known for anti-malaria and anti-hyperalgesia. The study is to investigate whether lactucin plays a key role in adipogenesis. To this end, in vivo male C57BL/6 mice fed a high-fat diet (HFD) were treated with 20 mg/kg/day of lactucin or vehicle by gavage for seven weeks. Compared with vehicle-treated controls, Lactucin-treated mice showed lower body mass and mass of adipose tissue. Consistently, in vitro 3T3-L1 cells were treated with 20 µM of lactucin. Compared to controls, lactucin-treated cells showed significantly less lipid accumulation during adipocyte differentiation and lower levels of lipid synthesis markers. Mechanistically, we showed the anti-adipogenic property of lactucin was largely limited to the early stage of adipogenesis. Lactucin-treated cells fail to undergo mitotic clonal expansion (MCE). Further studies demonstrate that lactucin-induced MCE arrests might result from reduced phosphorylation of JAK2 and STAT3. We then asked whether activation of JAK2/STAT3 would restore the inhibitory effect of lactucin on adipogenesis with pharmacological STAT3 activator colivelin. Our results revealed similar levels of lipid accumulation between lactucin-treated cells and controls in the presence of colivelin, indicating that inactivation of STAT3 is the limiting factor for the anti-adipogenesis of lactucin in these cells. Together, our results provide the indication that lactucin exerts an anti-adipogenesis effect, which may open new therapeutic options for obesity.


Subject(s)
Adipogenesis/drug effects , Dietary Supplements , Down-Regulation/drug effects , Janus Kinase 2/metabolism , Lactones/pharmacology , Mitosis/drug effects , Phorbols/pharmacology , STAT3 Transcription Factor/metabolism , Sesquiterpenes/pharmacology , Signal Transduction , 3T3-L1 Cells , Adipocytes/drug effects , Adipocytes/metabolism , Adipogenesis/genetics , Animals , Cell Cycle Checkpoints/drug effects , Cell Proliferation/drug effects , Clone Cells , Diet, High-Fat , Down-Regulation/genetics , Gene Expression Regulation/drug effects , Hyperglycemia/genetics , Hyperglycemia/pathology , Lactones/chemistry , Male , Mice , Mice, Inbred C57BL , Obesity/genetics , Obesity/pathology , Phorbols/chemistry , Sesquiterpenes/chemistry , Signal Transduction/drug effects , Triglycerides/biosynthesis
SELECTION OF CITATIONS
SEARCH DETAIL