Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters

Therapeutic Methods and Therapies TCIM
Database
Language
Affiliation country
Publication year range
1.
Biofabrication ; 16(2)2024 02 07.
Article in English | MEDLINE | ID: mdl-38277678

ABSTRACT

The inflammatory response is one of the general symptoms that accompany tumorigenesis, the pro-inflammatory factors cyclooxygenase-2 (COX-2) and COX-2-derived prostaglandin-2 (PGE-2) in the inflammatory environment surrounding tumors possess promoting tumor development, metastasis and angiogenesis effects. In addition, the hypoxic environment of tumors severely limits the effectiveness of photodynamic therapy (PDT). In this study, a universal extracellular-intracellular 'on-demand' release nanomedicine DOX@PDA-ICG@MnO2@GN-CEL was developed for the combined fight against malignant tumors using a spatiotemporal controlled gelatin coated polydopamine (PDA@GN) as the carrier and loaded with the chemotherapeutic drug doxorubicin (DOX), the photosensitizer indocyanine green (ICG), the PDT enhancer MnO2and the anti-inflammatory drug celecoxib (CEL) individually. Our results showed that DOX@PDA-ICG@MnO2@GN-CEL could release CEL extracellularly by matrix metalloproteinase-2 response and inhibit the COX-2/PGE-2 pathway, reduce chemotherapy resistance and attenuate the concurrent inflammation. After entering the tumor cells, the remaining DOX@PDA-ICG@MnO2released DOX, ICG and MnO2intracellularly through PDA acid response. MnO2promoted the degradation of endogenous H2O2to generate oxygen under acidic conditions to alleviate the tumor hypoxic environment, enhance PDT triggered by ICG. PDA and ICG exhibited photothermal therapy synergistically, and DOX exerted chemotherapy with reduced chemotherapy resistance. The dual responsive drug release switch enabled the chemotherapeutic, photothermal, photodynamic and anti-inflammatory drugs precisely acted on different sites of tumor tissues and realized a promising multimodal combination therapy.


Subject(s)
Hyperthermia, Induced , Nanoparticles , Neoplasms , Humans , Matrix Metalloproteinase 2 , Drug Liberation , Tumor Microenvironment , Cyclooxygenase 2 , Manganese Compounds , Hyperthermia, Induced/methods , Oxides , Doxorubicin/pharmacology , Indocyanine Green/pharmacology , Anti-Inflammatory Agents , Cell Line, Tumor
2.
Int J Nanomedicine ; 17: 3821-3839, 2022.
Article in English | MEDLINE | ID: mdl-36072959

ABSTRACT

Introduction: During the combined treatment of tumors, the non-interfering transportation of drugs with different solubilities and the controllable sequential release are the main challenges. Here, we reported a double-chamber "Dandelion" -like sequential drug delivery system to realize the sequential release of different drugs for treating malignant tumors synergistically. Methods: After synthesizing mesoporous silica nanoparticles (MSN) by template method, a hydrophilic chemotherapy drug doxorubicin (DOX) was loaded into the channels of mesoporous silica (MSN) and locked with polydopamine (PDA) coating. Next, ß-cyclodextrin (ß-CDs) was decorated on PDA by Michael addition reaction, and the hydrophobic photosensitizer chlorin e6 (Ce6) was encapsulated into the hydrophobic chambers of ß-CDs. Finally, AS1411 was modified on the surface of PDA and obtained DOX@MSN@PDA-ß-CD/Ce6-AS1411 nanoparticles (DMPCCA) through which orthogonal loading and effective controlled release of different drugs were realized. Results: Under the sequential irradiations of 808 nm and 660 nm near-infrared (NIR) laser, PDA promoted the extensive release of Ce6 firstly while playing the effect of photothermal therapy (PTT), further to achieve the effect of photodynamic therapy (PDT) of Ce6. Meanwhile, the rapid release of DOX loaded in MSN channels showed a time lag of about 5 h after Ce6 release, through which it maximized the chemotherapeutic effect. Besides, the present drug loading nano-platform combined passive tumor-targeting effect given by EPR and active tumor-targeting effect endowed by AS1411 realized PTT-PDT-chemotherapy triple mode synergistic combination. Conclusion: We offer a general solution to address the key limitations for the delivery and sequential release of different drugs with different solubilities.


Subject(s)
Neoplasms , Photochemotherapy , Taraxacum , Doxorubicin/chemistry , Drug Delivery Systems , Neoplasms/therapy , Silicon Dioxide/chemistry
3.
Biomed Mater ; 17(6)2022 09 09.
Article in English | MEDLINE | ID: mdl-36001994

ABSTRACT

Chemo-thermotherapy, as a promising cancer combination therapy strategy, has attracted widespread attention. In this study, a novel aptamer functionalized thermosensitive liposome encapsulating hydrophobic drug quercetin was fabricated as an efficient drug delivery system. This aptamer-functionalized quercetin thermosensitive liposomes (AQTSL) combined the merits of high-loading yield, sustained drug release, long-term circulation in the body of PEGylated liposomes, passive targeting provided by 100-200 nm nanoparticles, active targeting and improved internalization effects offered by AS1411 aptamer, and temperature-responsive of quercetin release. In addition, AQTSL tail vein injection combined with 42 °C water bath heating on tumor site (AQTSL + 42 °C)treatment inhibited the tumor growth significantly compared with the normal saline administration (p< 0.01), and the inhibition rate reached 75%. Furthermore, AQTSL + 42 °C treatment also slowed down the tumor growth significantly compared with QTSL combined with 42 °C administration (p< 0.05), confirming that AS1411 decoration on QTSL increased the active targeting and internalization effects of the drug delivery system, and AS1411 aptamer itself might also contribute to the tumor inhibition. These data indicate that AQTSL is a potential carrier candidate for different hydrophobic drugs and tumor targeting delivery, and this kind of targeted drug delivery system combined with temperature responsive drug release mode is expected to achieve an ideal tumor therapy effect.


Subject(s)
Antineoplastic Agents , Neoplasms , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Doxorubicin , Drug Delivery Systems , Drug Liberation , Humans , Liposomes , Neoplasms/drug therapy , Quercetin
4.
Foods ; 11(3)2022 Jan 19.
Article in English | MEDLINE | ID: mdl-35159414

ABSTRACT

Guava fruit has a short postharvest shelf life at room temperature. Melatonin is widely used for preservation of various postharvest fruit and vegetables. In this study, an optimal melatonin treatment (600 µmol·L-1, 2 h) was identified, which effectively delayed fruit softening and reduced the incidence of anthracnose on guava fruit. Melatonin effectively enhanced the antioxidant capacity and reduced the oxidative damage to the fruit by reducing the contents of superoxide anions, hydrogen peroxide and malondialdehyde; improving the overall antioxidant capacity and enhancing the enzymatic antioxidants and non-enzymatic antioxidants. Melatonin significantly enhanced the activities of catalase, superoxide dismutase, ascorbate peroxidase and glutathione reductase. The contents of total flavonoids and ascorbic acid were maintained by melatonin. This treatment also enhanced the defense-related enzymatic activities of chitinase and phenylpropanoid pathway enzymes, including phenylalanine ammonia lyase and 4-coumaric acid-CoA-ligase. The activities of lipase, lipoxygenase and phospholipase D related to lipid metabolism were repressed by melatonin. These results showed that exogenous melatonin can maintain the quality of guava fruit and enhance its resistance to disease by improving the antioxidant and defense systems of the fruit.

5.
Plant Signal Behav ; 14(8): 1629267, 2019.
Article in English | MEDLINE | ID: mdl-31184247

ABSTRACT

Physalis angulata L., a member of the family Solanaceae, is widely used as the folk medicine in various countries. Continuous research efforts are devoted to the discovery of the effective medicinal ingredients from Physalis angulata. However, due to the limited resources of genome and transcriptome sequencing data, only a few studies have been performed at the gene regulatory level. In this study, the transcriptomes of five organs (roots, stems, leaves, flowers and fruits) of Physalis angulata were reported. Based on the transcriptome assembly containing 196,117 unique transcripts, a total of 17,556 SSRs (simple sequence repeats) were identified, which could be useful RNA-based barcoding for discrimination of the plants closely relative to Physalis angulata. Additionally, 24 transcripts were discovered to be the potential microRNA (miRNA) precursors which encode a total of 31 distinct mature miRNAs. Some of these precursors showed organ-specific expression patterns. Target prediction revealed 116 miRNA-target pairs, involving 31 miRNAs and 83 target transcripts in Physalis angulata. Taken together, our results could serve as the data resource for in-depth studies on the molecular regulatory mechanisms related to the production of medicinal ingredients in Physalis angulata.


Subject(s)
MicroRNAs/genetics , Physalis/genetics , Transcriptome/genetics , Gene Expression Regulation, Plant/genetics , Microsatellite Repeats/genetics
SELECTION OF CITATIONS
SEARCH DETAIL