Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Therapeutic Methods and Therapies TCIM
Database
Affiliation country
Publication year range
1.
Zhongguo Zhong Yao Za Zhi ; 49(2): 487-497, 2024 Jan.
Article in Chinese | MEDLINE | ID: mdl-38403324

ABSTRACT

This study aims to explore the anti-inflammatory, vasodilation, and cardioprotective effects of the intestinal absorption liquids containing Xinshubao Tablets or single herbs, and to elucidate the potential mechanism based on network pharmacology. Western blot was then conducted to validate the expression changes of core proteins. Lipopolysaccharide(LPS)-stimulated RAW264.7 cells were used to observe the anti-inflammatory effect. The vasodilation activity was examined by the microvessel relaxation assay in vitro. Oxygen-glucose deprivation(OGD)-induced H9c2 cells were used to investigate the cardioprotective effect. The chemical components were retrieved from Herb databases and composition of Xinshubao Tablets drug-containing intestinal absorption solution. Drug targets were retrieved from SwissTargetPrediction databases. GeneCards was searched for the targets associated with the anti-inflammatory, vasodilation, and cardioprotective effects. The common targets shared by the drug and the effects were used to establish the protein-protein interaction(PPI) network, from which the core targets were obtained. Finally, the core targets were imported into Cytoscape 3.9.1 for Gene Ontology(GO) and Kyoto Encyclopedia of Genes and Genomes(KEGG) analyses. The anti-inflammatory experiment showed that both Xinshubao Tablets and the single herbs constituting this formula had anti-inflammatory effects. Curcumae Radix had the strongest inhibitory effect on the production of tumor necrosis factor-α(TNF-α), and Salviae Miltiorrhizae Radix et Rhizoma had the strongest inhibitory effect on the generation of interleukin-6(IL-6). Xinshubao Tablets, Curcumae Radix, and Crataegi Fructus had vasodilation effect, and Crataegi Fructus had the strongest effect. Xinshubao Tablets, Salviae Miltiorrhizae Radix et Rhizoma, Acanthopanacis Senticosi Radix et Rhizoma seu Caulis, and Paeoniae Radix Alba had cardioprotective effects, and Salviae Miltiorrhizae Radix et Rhizoma had the strongest cardioprotective effect. Network pharmacology results demonstrated that except the whole formula, Salviae Miltiorrhizae Radix et Rhizoma had the most components with anti-inflammatory effect, and Curcumae Radix had the most components with vasodilation and cardioprotective effects, followed by Salviae Miltiorrhizae Radix et Rhizoma. The nitric oxide synthase 3(NOS3) was predicted as the core target for the anti-inflammatory, vasodilation, and cardioprotective effects. Western blot results showed that Xinshubao Tablets significantly up-regulated the expression of NOS3 in OGD-induced H9c2 cells. GO enrichment analysis showed that the effects were mainly related to lipid exported from cell, regulation of blood pressure, and inflammatory response. KEGG pathway enrichment predicted AGE-RAGE and HIF-1 signaling pathways as the key pathways.


Subject(s)
Drugs, Chinese Herbal , Drugs, Chinese Herbal/chemistry , Network Pharmacology , Vasodilation , Rhizome/chemistry , Plant Roots/chemistry , Tumor Necrosis Factor-alpha , Medicine, Chinese Traditional
2.
BMC Plant Biol ; 23(1): 597, 2023 Nov 28.
Article in English | MEDLINE | ID: mdl-38017446

ABSTRACT

BACKGROUND: Arbuscular mycorrhizal fungi (AMF) form symbiotic relationships with various terrestrial plants and have attracted considerable interest as biofertilizers for improving the quality and yield of medicinal plants. Despite the widespread distribution of AMFs in Salvia miltiorrhiza Bunge's roots, research on the impact of multiple AMFs on biomass and active ingredient accumulations has not been conducted. In this study, the effects of five native AMFs (Glomus formosanum, Septoglomus constrictum, Rhizophagus manihotis, Acaulospora laevis, and Ambispora gerdemannii) and twenty-six communities on the root biomass and active ingredient concentrations of S. miltiorrhiza were assessed using the total factor design method. RESULTS: Thirty-one treatment groups formed symbiotic relationships with S. miltiorrhiza based on the pot culture results, and the colonization rate ranged from 54.83% to 89.97%. AMF communities had higher colonization rates and total phenolic acid concentration than single AMF, and communities also appeared to have higher root fresh weight, dry weight, and total phenolic acid concentration than single inoculations. As AMF richness increased, there was a rising trend in root biomass and total tanshinone accumulations (ATTS), while total phenolic acid accumulations (ATP) showed a decreasing trend. This suggests that plant productivity was influenced by the AMF richness, with higher inoculation benefits observed when the communities contained three or four AMFs. Additionally, the affinities of AMF members were also connected to plant productivity. The inoculation effect of closely related AMFs within the same family, such as G. formosanum, S. constrictum, and R. manihotis, consistently yielded lower than that of mono-inoculation when any combinations were applied. The co-inoculation of S. miltiorrhiza with nearby or distant AMFs from two families, such as G. formosanum, R. manihotis, and Ac. laevis or Am. gerdemannii resulted in an increase of ATP and ATTS by more than 50%. AMF communities appear to be more beneficial to the yield of bioactive constituents than the single AMF, but overall community inoculation effects are related to the composition of AMFs and the relationship between members. CONCLUSION: This study reveals that the AMF community has great potential to improve the productivity and the accumulation of bioactive constituents in S. miltiorrhiza, indicating that it is an effective way to achieve sustainable agricultural development through using the AMF community.


Subject(s)
Mycorrhizae , Plants, Medicinal , Salvia miltiorrhiza , Humans , Plants, Medicinal/microbiology , Plant Roots , Fungi , Adenosine Triphosphate
SELECTION OF CITATIONS
SEARCH DETAIL