Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Country/Region as subject
Language
Affiliation country
Publication year range
1.
J Oleo Sci ; 73(2): 147-161, 2024.
Article in English | MEDLINE | ID: mdl-38311405

ABSTRACT

Tigernut has been recognized as a promising resource for edible oil and starch. However, the research on the quality characteristics of tigernut from different regions is lagging behind, which limits the application of tigernut in food industry. Tigernut tubers were obtained from six major growing regions in China, and the physicochemical properties of their main components, oil and starch, were characterized. Tigernut tubers from Baoshan contained the most oil (30.12%), which contained the most ß-carotene (130.4 µg/100 g oil) due to high average annual temperature. Gas chromatography analysis and fingerprint analysis results indicated that tigernut oil (TNO) consists of seven fatty acids, of which oleic acid is the major component. Changchun TNO contained the least total tocopherols (6.04 mg/100 g oil) due to low average annual temperature. Tigernut tubers from Chifeng (CF) contained the most starch (34.85%) due to the large diurnal temperature range. Xingtai starch contained the most amylose (28.4%). Shijiazhuang starch showed the highest crystallinity (19.5%). Anyang starch had the highest pasting temperature (76.0°C). CF starch demonstrated superior freeze-thaw stability (syneresis: 50%) due to low mean annual precipitation. The results could be further applied to support tigernut industries and relevant researchers that looks for geographical origin discrimination and improvements on tigernut quality, with unique physicochemical and technological properties.


Subject(s)
Cyperus , Starch , Starch/chemistry , Cyperus/chemistry , Plant Oils/chemistry , Vegetables , China
2.
Int J Biol Macromol ; 192: 1075-1083, 2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34673100

ABSTRACT

The objective of the present investigation was to extract pectic polysaccharides from sesame seed hull and to determine their physicochemical and functional characteristics. The pectic polysaccharides in the seed hull were extracted with HCl and then collected at three ethanol concentrations of 30% (SSP30), 50% (SSP50), and 90% (SSP90). We found that SSP30 represented 75.6% of the total polysaccharides, and that it contained 76.39% galacturonic acid, with many HG domains and few short side chains in the RG-I domains. SSP30 exhibited the strongest hydroxyl radical scavenging activity among the three fractions, and was better able to stabilize the emulsions. Higher Mw pectic polysaccharides were firstly precipitated at lower ethanol concentrations, and the Mw of the precipitated pectic polysaccharides decreased with increasing ethanol concentration. These results provide important information on the structure and functional characteristics of sesame hull polysaccharides. This information can contribute to the future development of sesame hull polysaccharides for industrial purposes.


Subject(s)
Pectins/chemistry , Pectins/pharmacology , Plant Extracts/chemistry , Plant Extracts/pharmacology , Antioxidants/chemistry , Antioxidants/pharmacology , Chemical Phenomena , Emulsions , Molecular Weight , Pectins/isolation & purification , Plant Extracts/isolation & purification , Polysaccharides/chemistry , Polysaccharides/pharmacology , Rheology , Sesamum/chemistry , Spectrum Analysis , Structure-Activity Relationship , Sugars/chemistry , Thermogravimetry
SELECTION OF CITATIONS
SEARCH DETAIL