Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Neurobiol Dis ; 130: 104532, 2019 10.
Article in English | MEDLINE | ID: mdl-31302244

ABSTRACT

Cortical hyperexcitability is an early and intrinsic feature of Amyotrophic Lateral Sclerosis (ALS), but the mechanisms underlying this critical neuronal dysfunction are poorly understood. Recently, we have demonstrated that layer V pyramidal neurons (PNs) in the primary motor cortex (M1) of one-month old (P30) G93A ALS mice display an early hyperexcitability status compared to Control mice. In order to investigate the time-dependent evolution of the cortical excitability in the G93A ALS model, here we have performed an electrophysiological and immunohistochemical study at three different mouse ages. M1 PNs from 14-days old (P14) G93A mice have shown no excitability alterations, while M1 PNs from 3-months old (P90) G93A mice have shown a hypoexcitability status, compared to Control mice. These age-dependent cortical excitability dysfunctions correlate with a similar time-dependent trend of the persistent sodium current (INaP) amplitude alterations, suggesting that INaP may play a crucial role in the G93A cortical excitability aberrations. Specifically, immunohistochemistry experiments have indicated that the expression level of the NaV1.6 channel, one of the voltage-gated Na+ channels mainly distributed within the central nervous system, varies in G93A primary motor cortex during disease progression, according to the excitability and INaP alterations, but not in other cortical areas. Microfluorometry experiments, combined with electrophysiological recordings, have verified that P30 G93A PNs hyperexcitability is associated to a greater accumulation of intracellular calcium ([Ca2+]i) compared to Control PNs, and that this difference is still present when G93A and Control PNs fire action potentials at the same frequency. These results suggest that [Ca2+]i de-regulation in G93A PNs may contribute to neuronal demise and that the NaV1.6 channels could be a potential therapeutic target to ameliorate ALS disease progression.


Subject(s)
Amyotrophic Lateral Sclerosis/metabolism , Motor Cortex/physiopathology , Motor Neurons/metabolism , NAV1.6 Voltage-Gated Sodium Channel/metabolism , Action Potentials/physiology , Age Factors , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/physiopathology , Animals , Calcium/metabolism , Disease Models, Animal , Disease Progression , Gene Expression Regulation , Male , Mice , Mice, Transgenic , Motor Cortex/metabolism , NAV1.6 Voltage-Gated Sodium Channel/genetics
2.
Exp Neurol ; 226(1): 218-30, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20832409

ABSTRACT

The higher risk factor for Amyotrophic Lateral Sclerosis (ALS) among Italian soccer players is a question that is still debated. One of the hypotheses that have been formulated to explain a possible link between ALS and soccer players is related to the abuse of dietary supplements and drugs for enhancing sporting performance. In particular, it has been reported that branched-chain amino acids (BCAAs) are widely used among athletes as nutritional supplements. To observe the possible effect of BCAAs on neuronal electrical properties, we performed electrophysiological experiments on Control cultured cortical neurons and on neurons after BCAA treatment. BCAA-treated neurons showed hyperexcitability and rapamycin was able to suppress it and significantly reduce the level of mTOR, Akt and p70S6 phosphorylation. Interestingly, the hyperexcitability previously reported in cortical neurons from a genetic mouse model of ALS (G93A) was also reversed by rapamycin treatment. Moreover, both G93A and valine-treated neurons presented significantly higher levels of Pp70S6 when compared to control neurons, strongly indicating the involvement of this substrate in ALS pathology. Finally, we performed electrophysiological experiments on motor cortex slices from Control and G93A mice and those fed with a BCAA-enriched diet. We observed that neuron excitability was comparable between G93A and BCAA-enriched diet mice, but was significantly higher than in Control mice. These findings, besides strongly indicating that BCAAs specifically induce hyperexcitability, seem to suggest the involvement of p70S6 substrate in ALS pathology.


Subject(s)
Amyotrophic Lateral Sclerosis/metabolism , Cerebral Cortex/metabolism , Neurons/metabolism , Valine/pharmacology , Action Potentials/drug effects , Amino Acids, Branched-Chain/metabolism , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/pathology , Animals , Blotting, Western , Cell Survival/drug effects , Cells, Cultured , Cerebral Cortex/cytology , Cerebral Cortex/drug effects , Dose-Response Relationship, Drug , Electrophysiology , Humans , Immunosuppressive Agents/pharmacology , Intracellular Signaling Peptides and Proteins/metabolism , Mice , Mice, Transgenic , Neurons/drug effects , Phosphorylation , Protein Serine-Threonine Kinases/metabolism , Sirolimus/pharmacology , Sodium Channels/drug effects , Superoxide Dismutase/genetics , Superoxide Dismutase-1 , TOR Serine-Threonine Kinases
SELECTION OF CITATIONS
SEARCH DETAIL