Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
J Neurochem ; 144(1): 50-57, 2018 01.
Article in English | MEDLINE | ID: mdl-29023772

ABSTRACT

l-Cysteine is an endogenous sulfur-containing amino acid with multiple and varied roles in the central nervous system, including neuroprotection and the maintenance of the redox balance. However, it was also suggested as an excitotoxic agent implicated in the pathogenesis of neurological disorders such as Parkinson's and Alzheimer's disease. l-Cysteine can modulate the activity of ionic channels, including voltage-gated calcium channels and glutamatergic NMDA receptors, whereas its effects on GABAergic neurotransmission had not been studied before. In the present work, we analyzed the effects of l-cysteine on responses mediated by homomeric GABAA ρ1 receptors, which are known for mediating tonic γ-aminobutyric acid (GABA) responses in retinal neurons. GABAA ρ1 receptors were expressed in Xenopus laevis oocytes and GABA-evoked chloride currents recorded by two-electrode voltage-clamp in the presence or absence of l-cysteine. l-Cysteine antagonized GABAA ρ1 receptor-mediated responses; inhibition was dose-dependent, reversible, voltage independent, and susceptible to GABA concentration. Concentration-response curves for GABA were shifted to the right in the presence of l-cysteine without a substantial change in the maximal response. l-Cysteine inhibition was insensitive to chemical protection of the sulfhydryl groups of the ρ1 subunits by the irreversible alkylating agent N-ethyl maleimide. Our results suggest that redox modulation is not involved during l-cysteine actions and that l-cysteine might be acting as a competitive antagonist of the GABAA ρ1 receptors.


Subject(s)
Cysteine/pharmacology , GABA-A Receptor Antagonists/pharmacology , Receptors, GABA-A/drug effects , Animals , Binding, Competitive , Chlorides/metabolism , Cystine/pharmacology , Dose-Response Relationship, Drug , Ethylmaleimide/pharmacology , Homocysteine/pharmacology , Humans , Ion Transport/drug effects , Oocytes , Patch-Clamp Techniques , RNA, Complementary/genetics , Receptors, GABA-A/physiology , Recombinant Proteins/metabolism , Xenopus laevis , gamma-Aminobutyric Acid/pharmacology
2.
Br J Pharmacol ; 141(4): 717-27, 2004 Feb.
Article in English | MEDLINE | ID: mdl-14732759

ABSTRACT

1. The mechanisms of action of antagonists of the gamma-aminobutyric acid C (GABA(C)) receptor picrotoxin, quercetin and pregnanolone were studied. 2. Ionic currents (chloride), mediated through human homomeric GABA rho(1) receptors expressed in Xenopus oocytes, were recorded by two-electrode voltage clamp. 3. Dose-response (D-R) curves and kinetic measurements of GABA rho(1) currents were carried out in the presence or absence of antagonists. Use-dependent actions were also evaluated. 4. Picrotoxin, quercetin and pregnanolone exerted noncompetitive actions. 5. IC(50) values measured at the EC(50) for GABA (1 microM) were as follows: picrotoxin 0.6+/-0.1 microM (Hill coefficient n=1.0+/-0.2); quercetin 4.4+/-0.4 microM (n=1.5+/-0.2); pregnanolone 2.1+/-0.5 microM (n=0.8+/-0.1). 6. These antagonists produced changes only in the slope of the linear current-voltage relationships, which was indicative of voltage-independent effects. 7. The effect of picrotoxin on GABA rho(1) currents was use-dependent, strongly relied on agonist concentration and showed a slow onset and offset. The mechanism was compatible with an allosteric inhibition and receptor activation was a prerequisite for antagonism. 8. The effect of quercetin was use-independent, showed relatively fast onset and offset, and resulted in a slowed time course of the GABA-evoked currents. 9. The effect of pregnanolone was use-independent, presented fast onset and a very slow washout, and did not affect current activation. 10. All the antagonists accelerated the time course of deactivation of the GABA rho(1) currents.


Subject(s)
GABA Antagonists/pharmacology , Picrotoxin/pharmacology , Pregnanolone/pharmacology , Quercetin/pharmacology , Receptors, GABA-B/drug effects , Animals , DNA, Complementary/biosynthesis , DNA, Complementary/genetics , Dose-Response Relationship, Drug , Electrophysiology , Evoked Potentials/drug effects , Humans , Kinetics , Oocytes/metabolism , Patch-Clamp Techniques , Receptors, GABA-B/genetics , Recombinant Proteins/drug effects , Xenopus laevis , gamma-Aminobutyric Acid/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL