Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Chem Biol Interact ; 394: 110968, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38522564

ABSTRACT

Bone metastases caused by breast cancer pose a major challenge to the successful treatment of breast cancer patients. Many researchers have suggested that herbal medicines are extremely effective at preventing and treating cancer-associated osteolysis. Previous studies have revealed that Morusin (MOR) is cytotoxic to many cancer cells ex vivo. Nevertheless, how MOR contributes to osteolysis induced by breast cancer is still unknown, and the potential mechanism of action against osteolysis is worthy of further study. The protective effect and molecular mechanism of MOR in inhibiting breast cancer cell-induced osteolysis were verified by experiments and network pharmacology. Cell function was assessed by cell proliferation, osteoclast (OC) formation, bone resorption, and phalloidin staining. Tumour growth was examined by micro-CT scanning in vivo. To identify potential MOR treatments, the active ingredient-target pathway of breast cancer was screened using network pharmacology and molecular docking approaches. This study is the first to report that MOR can prevent osteolysis induced by breast cancer cells. Specifically, our results revealed that MOR inhibits RANKL-induced osteoclastogenesis and restrains the proliferation, invasion and migration of MDA-MB-231 breast cells through restraining the PI3K/AKT/MTOR signalling pathway. Notably, MOR prevented bone loss caused by breast cancer cell-induced osteolysis in vivo, indicating that MOR inhibited the development of OCs and the resorption of bone, which are essential for cancer cell-associated bone distraction. This study showed that MOR treatment inhibited osteolysis induced by breast cancer in vivo. MOR inhibited OC differentiation and bone resorption ex vivo and in vivo and might be a potential drug candidate for treating breast cancer-induced osteolysis.


Subject(s)
Breast Neoplasms , Osteolysis , Phosphatidylinositol 3-Kinase , Signal Transduction , TOR Serine-Threonine Kinases , Animals , Female , Humans , Mice , Breast Neoplasms/drug therapy , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Mice, Inbred BALB C , Mice, Nude , Molecular Docking Simulation , Osteoclasts/drug effects , Osteoclasts/metabolism , Osteolysis/metabolism , Osteolysis/drug therapy , Osteolysis/pathology , Phosphatidylinositol 3-Kinase/metabolism , Proto-Oncogene Proteins c-akt/metabolism , RANK Ligand/metabolism , Signal Transduction/drug effects , TOR Serine-Threonine Kinases/metabolism
2.
Curr Pharm Des ; 29(36): 2877-2890, 2023.
Article in English | MEDLINE | ID: mdl-38062663

ABSTRACT

BACKGROUND: Cervical cancer is a prevalent malignancy among women globally. OBJECTIVE: We aimed to uncover the mechanism of action of kaempferol in the treatment of cervical cancer using an integrated approach that combines metabolomics with network pharmacology. METHODS: Initially, we investigated the specific metabolites and potential pathways influenced by kaempferol in the pathological progression of cervical cancer, employing UHPLC-Q-Orbitrap MS metabolomics. In addition, network pharmacology analysis was performed to ascertain the pivotal targets of kaempferol in the context of CC therapy. RESULTS: Metabolomics analysis indicated that the therapeutic effect of kaempferol on cervical cancer is primarily associated with 11 differential metabolites and 7 metabolite pathways. These pathways include arginine and proline metabolism, the tricarboxylic acid cycle, phenylalanine, tyrosine, and tryptophan biosynthesis, fatty acid biosynthesis, glycerophospholipid metabolism, pantothenate and CoA biosynthesis, and tyrosine metabolism. Additionally, kaempferol was found to regulate 3 differential metabolites, namely palmitic acid, citric acid, and L-tyrosine, by directly targeting 7 specific proteins, including AKR1B1, CS, EGFR, PLA2G1B, PPARG, SLCO2B1, and SRC. Furthermore, molecular docking demonstrated strong binding affinities between kaempferol and 7 crucial targets. CONCLUSION: This study elucidates the intricate mechanisms by which kaempferol acts against cervical cancer. Furthermore, this research offers a novel approach to investigating the potential pharmacological mechanisms of action exhibited by natural compounds.


Subject(s)
Drugs, Chinese Herbal , Uterine Cervical Neoplasms , Female , Humans , Uterine Cervical Neoplasms/drug therapy , Kaempferols/pharmacology , Molecular Docking Simulation , Network Pharmacology , Metabolomics , Tyrosine , Aldehyde Reductase
3.
Chem Biodivers ; 20(9): e202300434, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37486314

ABSTRACT

Diabetic encephalopathy (DE) is a serious complication of diabetes, which affects patients' quality of life. We aimed to explore HLJDD in the treatment of DE by LC/MS and bioinformatics. UPLC-Q Exactive-Orbitrap MS was employed to clarify the compounds. The modules and hub targets of DE were gained from WGCNA. Subsequently, an Herb-Compound-Target network was constructed and enrichment analysis was used. In addition, a protein-protein interaction (PPI) network was constructed and molecular docking was used to verify the above analysis. As result, 138 compounds and 10 prototypes in brain were identified. In network pharmacology, 8 modules and 5692 hub targets were obtained from WGCNA. An Herb-Compound-Target network was constructed by 4 herbs, 10 compounds and 56 targets. The enrichment analysis showed that the treatment of DE with HLJDD involve oxidative stress and neuroprotection. Beside, SRC, JUN, STAT3, MAPK1 and PIK3R1 were identified and as hub targets of HLJDD in treating DE. Moreover, Molecular docking showed that five hub targets had strong affinity with the corresponding alkaloids. Therefore, we explored the underlying mechanisms of HLJDD in the treatment of DE and to provide the theoretical and scientific basis for subsequent experimental studies and clinical applications.


Subject(s)
Diabetes Mellitus , Drugs, Chinese Herbal , Humans , Molecular Docking Simulation , Drugs, Chinese Herbal/pharmacology , Chromatography, High Pressure Liquid , Quality of Life , Computational Biology , Diabetes Mellitus/drug therapy
4.
Article in English | MEDLINE | ID: mdl-35958922

ABSTRACT

Caerin 1.9 is a natural peptide derived from the skin secretions of the Australian tree frog (Litoria) with broad-spectrum antimicrobial and anticancer bioactivity. It improves the efficacy of a therapeutic vaccine and immune checkpoint inhibitor therapy when injected intratumorally and inhibits TC-1 tumor growth when applied topically through intact skin in a TC-1 murine tumor model. This paper investigated the pharmaceutical kinetic profile, the tissue distribution, and the acute safety investigation of Caerin 1.9 peptide in Sprague Dawley (SD) rats. The results showed that subcutaneous injection of Caerin 1.9 at 100 mg/kg is safe and does not cause mortality or organ malfunction in the recipient rats. For the consecutive injection of F3 at 10 mg/kg, the peak concentration (C max) of F3 displayed at 1 hr after injection in male rats was 591 ng/mL, the average drug retention time was 0.807 hr, T 1/2 was 4.58 hr, and AUC0-last was 1890 h × ng/mL. In female rats, C max was 256 ng/mL, with an average drug retention time of 2.96 hr, T 1/2 of 1.33 hr, and AUC0-last of 740 h × ng/mL. The results showed that the concentration of Caerin 1.9 in the peripheral blood peaked at 1 hour. As injected concentration increased, T 1/2 extended, and C max, AUC0-last, and volume of distribution at a steady state all increased. After 14 days of repeated subcutaneous injection at 10.0 mg/kg, no accumulation of Caerin 1.9 in plasma was observed. The results of tissue distribution showed that the Caerin 1.9 is below the LC-MS/MS detection threshold at a minimum concentration of 40 ng/g. In conclusion, Caerin 1.9 is well tolerated in rats and could be used with current immunotherapies for better management of solid tumors and genital warts.

5.
J Pharm Biomed Anal ; 192: 113652, 2021 Jan 05.
Article in English | MEDLINE | ID: mdl-33039912

ABSTRACT

Diabetic encephalopathy (DE) is a severe diabetic complication with cognitive dysfunction. Huang-Lian-Jie-Du Decoction (HLJDD), a famous traditional Chinese formula, is effective for the treatment of diabetes mellitus and Alzheimer's disease in clinical practices, however, the therapeutic effects and the underlying mechanisms of HLJDD on DE is unclear yet. With this purpose, behavior test, brain histological and biochemical analysis were estimated to assess the beneficial effects of HLJDD on DE. Plasma samples were collected for metabolomics analysis based on UPLC-Q-Orbitrap HRMS/MS and chemometric analysis. As a result, morris water maze test revealed that HLJDD could effectively improve the learning and memory abilities in db/db mice. Brain histological and biochemical analysis indicated that HLJDD could protect against neurodegeneration and oxidative stress in db/db mice. Meanwhile, a total of 21 potential biomarkers with significant differences were identified between Model group and Control group using untargeted metabolomics strategy. Among them, 11 metabolites showed a trend towards the normal levels after HLJDD intervention. These metabolites principally involved in glycerophospholipid metabolism, fatty acid ß-oxidation, linoleic acid metabolism, glucose metabolism and glutathione metabolism based on the metabolic pathway analysis, which were regulated in DE model mice after HLJDD intervention. Generally, the results demonstrated that HLJDD had beneficial effects on DE, which could be mediated via ameliorating the metabolic disorders.


Subject(s)
Alzheimer Disease , Diabetes Mellitus , Drugs, Chinese Herbal , Animals , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Metabolomics , Mice , Mice, Inbred Strains
6.
Zhongguo Zhong Yao Za Zhi ; 45(5): 1142-1148, 2020 Mar.
Article in Chinese | MEDLINE | ID: mdl-32237458

ABSTRACT

Serum metabonomic profiles of the model of focal cerebral ischemia reperfusion is established with the suture-occluded method by Longa to study the effect of ginsenosides. In this study, 48 rats were randomly divided into six groups: sham-operated group, pathological model group, positive drug group(6 mg·kg~(-1)·d~(-1)) and high, medium, low-dose ginsenosides groups(200, 100, 50 mg·kg~(-1)·d~(-1)). They are given intragastric administration respectively with same amount of 0.5% CMC-Na,nimodipine and ginsenoside for 5 days. At 2 h after the final administration, the model was established with the suture-occluded method, and free radical-scavenging activity changes of ginsenoside were observed by maillard reaction, and Longa was possible used as a renoprotective agent-occluded method. At the end of 24 h after the reperfusion, the hemolymph of rats in each group was collected, and the ~1H-NMR spectrum was collected after being treated by certain methods, and analyzed by principal component analysis(PCA). Compared with sham-operated group, pathological model group showed significant increases in the levels of lactate, glutamate, taurine, choline, glucose and methionine, but decreases in the levels of 3-hydroxybutyrate and phosphocreatine/creatine in serum. After treatment with ginsenosides, lipid, 3-hydroxybutyrate and phosphocreatine/creatine were increased in the serum of ginsenosides group rats, but with decreases in lactate and glutamate. The results showed that ginsenosides could regulate metabolic disorders in rats with focal cerebral ischemia reperfusion, and promote a recovery in the process of metabolism. It's helpful to promote the metabolic changes in rats with focal cerebral ischemia reperfusion via ~1H-NMR, and lay a foundation to develop ginsenosides as a new drug to treat ischemic cerebral paralysis.


Subject(s)
Brain Ischemia/drug therapy , Ginsenosides/pharmacology , Metabolome , Reperfusion Injury/drug therapy , 3-Hydroxybutyric Acid , Animals , Brain Ischemia/metabolism , Creatine , Hemolymph , Phosphocreatine , Proton Magnetic Resonance Spectroscopy , Random Allocation , Rats , Reperfusion Injury/metabolism
7.
Zhongguo Zhong Yao Za Zhi ; 44(7): 1410-1415, 2019 Apr.
Article in Chinese | MEDLINE | ID: mdl-31090299

ABSTRACT

This research aims to develop an UHPLC method, based on core-shell column(i.e. superficially porous particles), for simultaneous determination of eight isoflavonoids including formononetin,(6αR,11αR)-3-hydroxy-9,10-dimethoxypterocarpan, calycosin-7-O-ß-D-glucopyranoside,(3R)-7,2-dihydroxy-3,4-dimethoxyisoflavone, calycosin, ononin,(6αR,11αR)-9,10-dimethoxypterocarpan-3-O-ß-D-glucopyranoside, and(3R)-7,2-dihydroxy-3,4-dimethoxyisoflavan-7-O-ß-D-glucopyranoside in Astragali Radix. The analysis was performed on an Agilent Poroshell EC-C_(18 )column(2.1 mm×100 mm, 2.7 µm) with 0.2% formic acid solution(A)-acetonitrile(B) as mobile phase for gradient elution. The flow rate was 0.5 mL·min~(-1), with column temperature of 40 ℃ and the wavelengths were set at 260 and 280 nm. According to the results, all calibration curves showed good linearity(R~2>0.999 8) within the tested concentration ranges. Both the intra-and inter-day precisions for 8 isoflavonoids were less than 0.80%, with the mean recovery at the range of 94.71%-104.6%. Thus, the newly developed UHPLC method using core-shell column owned the advantages in terms of rapid analysis, low column pressure and less solvent consumption, thus enabling the usage of conventional HPLC systems. Meanwhile, quantitative evaluation was carried out for 22 batches of commercial Astragali Radix. It has been found that great variations occurred for the content of the individual isoflavonoids among different batches; in contrast, the total content of total 8 isoflavonoids(>0.1%) was stable in most samples, indicating that it was reasonable to involve all isoflavonoids as the chemical markers for the quality control of Astragali Radix.


Subject(s)
Astragalus Plant/chemistry , Drugs, Chinese Herbal/standards , Flavones/analysis , Chromatography, High Pressure Liquid , Phytochemicals/analysis , Plant Roots/chemistry , Quality Control
SELECTION OF CITATIONS
SEARCH DETAIL