Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Probiotics Antimicrob Proteins ; 14(3): 486-500, 2022 06.
Article in English | MEDLINE | ID: mdl-34255281

ABSTRACT

Mucositis is one of the most strenuous side effects caused by chemotherapy drugs, such as 5-fluorouracil (5-FU), during the treatment of several types of cancers. The disease is so prevalent and aggressive that many patients cannot resist such symptoms. However, despite its frequency and clinical significance, there is no effective treatment to prevent or treat mucositis. Thus, the use of probiotics as an adjuvant for the treatment has gained prominence. In the present study, we evaluated the effectiveness of oral administration of the Antarctic strain of Rhodotorula mucilaginosa UFMGCB 18,377 as an alternative to minimize side effects of 5-FU-induced mucositis in mice. Body weight, food consumption, stool consistency, and presence of blood in the feces were assessed daily in mice orally treated or not with the yeast and submitted or not to experimental mucositis. Blood, bones, and intestinal tissues and fluid were used to determine intestinal permeability and immunological, microbiological, and histopathological parameters. Treatment with R. mucilaginosa UFMGCB 18,377 was able to decrease clinical signs of the disease, such as reduction of food intake and body weight loss, and also decreased the number of intestinal enterobacteria and intestinal length shortening. Additionally, treatment was able to decrease the levels of MPO and EPO activities and inflammatory infiltrates, as well as the histopathological lesions characteristic of mucositis in the jejunum and ileum. Results of the present study showed that the oral administration of R. mucilaginosa UFMGCB 18,377 protected mice against mucositis induced by 5-FU.


Subject(s)
Mucositis , Animals , Antarctic Regions , Fluorouracil/adverse effects , Humans , Intestinal Mucosa , Mice , Mucositis/chemically induced , Mucositis/drug therapy , Mucositis/prevention & control , Rhodotorula
2.
Cancer Chemother Pharmacol ; 84(1): 117-126, 2019 07.
Article in English | MEDLINE | ID: mdl-31079219

ABSTRACT

PURPOSE: Gastrointestinal mucositis is a major problem associated with cancer therapy. To minimize these deleterious effects, simultaneous administration of antioxidant components, such as selenium, can be considered. There is a growing interest in the use of yeasts because they are able to convert inorganic selenium into selenomethionine. In the present study, oral administration of Saccharomyces cerevisiae UFMG A-905 enriched with selenium was evaluated as an alternative in minimizing the side effects of 5FU-induced mucositis in mice. METHODS: Mice body weight, food consumption, faeces consistency and the presence of blood in faeces were assessed daily during experimental mucositis induced by 5-fluorouracil (5FU). Blood was used for intestinal permeability determination, and small intestine for oxidative stress, immunological and histopathological examination. RESULTS: The increased intestinal permeability observed with mucositis induction was partially reverted by S. cerevisiae and selenium-enriched yeast. Both treatments were able to reduce myeloperoxidase activity, but only selenium-enriched yeast reduced eosinophil peroxidase activity. CXCL1/KC levels, histopathological tissue damage and oxidative stress (lipid peroxidation and nitrite production) in the small intestine were reduced by both treatments; however, this reduction was always higher when treatment with selenium-enriched yeast was evaluated. CONCLUSIONS: Results of the present study showed that the oral administration of S. cerevisiae UFMG A-905 protected mice against mucositis induced by 5-FU, and that this effect was potentiated when the yeast was enriched with selenium.


Subject(s)
Fluorouracil/toxicity , Mucositis/prevention & control , Probiotics/administration & dosage , Saccharomyces cerevisiae , Selenium/administration & dosage , Animals , Antimetabolites, Antineoplastic/toxicity , Antioxidants/administration & dosage , Antioxidants/pharmacology , Disease Models, Animal , Female , Intestinal Mucosa/drug effects , Intestinal Mucosa/pathology , Intestine, Small/drug effects , Intestine, Small/pathology , Lipid Peroxidation/drug effects , Mice , Mucositis/chemically induced , Oxidative Stress/drug effects , Probiotics/pharmacology , Selenium/pharmacology
3.
Biomed Pharmacother ; 84: 252-257, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27664949

ABSTRACT

Nowadays cancer is one of the most common causes of deaths worldwide. Conventional antitumor agents still present various problems related to specificity for tumor cells often leading to therapeutic failure. Nanoscale particles are considered potential alternative to direct access of drugs into tumor cells, therefore increasing the drug accumulation and performance. The aim of this study was to evaluate the antitumor activity of doxorubicin (DOX)-loaded nanostructured lipid carriers (NLC) versus liposomes against a breast cancer animal experimental model. NLC-DOX and liposomes-DOX were successfully prepared and characterized. Tumor-bearing mice were divided into five groups (blank-NLC, blank-liposome, DOX, NLC-DOX, liposome-DOX). Each animal received by the tail vein four doses of antitumoral drugs (total dose, 16mg/kg), every 3 days. Antitumor efficacy was assessed by measuring 1) tumor volume, calculating the inhibitory ratio (TV-IR, see after) and 2) acquiring scintigraphic images of the tumor using doxorubicin radiolabeled with technetium-99m as an imaging tumor probe. Liposome-DOX and free DOX did not showed differences in the tumor mean volume, whereas NLC-DOX proved to be the best treatments in controlling the tumor growth. NLC-DOX showed an inhibition ration (TV-IR) of 73.5% while free DOX and liposome-DOX decreased TV-RI of 48.8% and 68.0%, respectively. Tumor was clearly visualized in controls, DOX, and liposome-DOX groups. Yet, regarding the NLC-DOX group, tumor was barely identified by the image, indicating antitumor efficacy. Moreover, both NLC and liposomes proved to be able to delay the occurrence of lung metastasis. In conclusion, results of this study indicated that NLC-DOX might be an alternative strategy to achieve an efficient antitumor activity.


Subject(s)
Antibiotics, Antineoplastic/administration & dosage , Breast Neoplasms/drug therapy , Doxorubicin/analogs & derivatives , Lipids/chemistry , Nanoparticles , Animals , Antibiotics, Antineoplastic/chemistry , Antibiotics, Antineoplastic/metabolism , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Line, Tumor , Doxorubicin/administration & dosage , Doxorubicin/chemistry , Doxorubicin/metabolism , Drug Compounding , Female , Injections, Intravenous , Liposomes , Lung Neoplasms/metabolism , Lung Neoplasms/prevention & control , Lung Neoplasms/secondary , Mice, Inbred BALB C , Polyethylene Glycols/administration & dosage , Polyethylene Glycols/chemistry , Polyethylene Glycols/metabolism , Time Factors , Tumor Burden
4.
Parasitol Res ; 114(12): 4625-35, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26346453

ABSTRACT

The present study aimed to investigate the in vitro antileishmanial activity of strychnobiflavone flavonoid against Leishmania infantum, as well as its mechanism of action, and evaluate the ex vivo biodistribution profile of the flavonoid in naive BALB/c mice. The antileishmanial activity (IC50 value) of strychnobiflavone against stationary promastigote and amastigote-like stages of the parasites was of 5.4 and 18.9 µM, respectively; with a 50% cytotoxic concentration (CC50) value of 125.0 µM on murine macrophages, resulting in selectivity index (SI) of 23.2 and 6.6, respectively. Amphotericin B, used as a positive control, presented SI values of 7.6 and 3.3 for promastigote and amastigote-like stages of L. infantum, respectively. The strychnobiflavone was also effective in reducing in significant levels the percentage of infected macrophages, as well as the number of amastigotes per macrophage, after the treatment of infected macrophages using the flavonoid. By using different fluorescent probes, we investigated the bioenergetics metabolism of L. infantum promastigotes and demonstrated that the flavonoid caused the depolarization of the mitochondrial membrane potential, without affecting the production of reactive oxygen species. In addition, using SYTOX(®) green as a fluorescent probe, the strychnobiflavone demonstrated no interference in plasma membrane permeability. For the ex vivo biodistribution assays, the flavonoid was labeled with technetium-(99m) and studied in a mouse model by intraperitoneal route. After a single dose administration, the scintigraphic images demonstrated a highest uptake by the liver and spleen of the animals within 60 min, resulting in low concentrations after 24 h. The present study therefore demonstrated, for the first time, the antileishmanial activity of the strychnobiflavone against L. infantum, and suggests that the mitochondria of the parasites may be the possible target organelle. The preferential distribution of this compound into the liver and spleen of the animals could warrant its employ in the treatment of visceral leishmaniasis.


Subject(s)
Antiprotozoal Agents/pharmacology , Flavonoids/administration & dosage , Leishmania infantum/drug effects , Leishmaniasis, Visceral/drug therapy , Plant Extracts/administration & dosage , Strychnos/chemistry , Animals , Antiprotozoal Agents/isolation & purification , Cell Membrane Permeability/drug effects , Drug Evaluation, Preclinical , Female , Flavonoids/isolation & purification , Humans , Leishmania infantum/physiology , Leishmaniasis, Visceral/parasitology , Mice , Mice, Inbred BALB C , Mitochondria/drug effects , Mitochondria/metabolism , Plant Extracts/isolation & purification , Reactive Oxygen Species/metabolism , Tissue Distribution
5.
Nutr Cancer ; 67(3): 486-93, 2015.
Article in English | MEDLINE | ID: mdl-25803482

ABSTRACT

Beneficial effects of L-arginine on immune responses and bowel function have been reported. Mucositis is a side effect of chemotherapy treatment that affects approximately 40% of patients. This complication is characterized by inflammation that affects the gastrointestinal tract, increasing permeability and causing abdominal pain, nausea, vomiting, and diarrhea, which worsen the patient's nutritional status and increases morbimortality. The aim of this study was to evaluate the effect of pretreating with 2% L-arginine supplementation in water on mucositis as induced by 5-fluorouracil (5-FU; a single dose of 200 mg/kg body weight) in Swiss male mice. The effect of L-arginine on weight, intestinal permeability, morphology, and the histopathological score of the small intestine (from 0 to 12), oxidative stress, myeloperoxidase (MPO), and N-acetylglucosaminidase (NAG) activities were evaluated. Intestinal length improvement was observed, in addition to the partial recovery of the mucosal architecture. L-arginine attenuated the histopathological score and MPO activity. There was also an improvement in intestinal permeability, despite weight loss after 5-FU administration. In conclusion, L-arginine can positively impact intestinal mucositis by promoting partial mucosal recovery, reducing inflammation and improving intestinal permeability.


Subject(s)
Antimetabolites, Antineoplastic/toxicity , Arginine/pharmacology , Fluorouracil/toxicity , Intestinal Mucosa/drug effects , Mucositis/prevention & control , Animals , Male , Mice , Mucositis/chemically induced , Oxidative Stress , Peroxidase/metabolism
6.
Br J Nutr ; 112(10): 1601-10, 2014 Nov 28.
Article in English | MEDLINE | ID: mdl-25322775

ABSTRACT

Dietary glutamine (Gln) supplementation improves intestinal function in several stressful conditions. Therefore, in the present study, the effects of dietary Gln supplementation on the core body temperature (T core), bacterial translocation (BT) and intestinal permeability of mice subjected to acute heat stress were evaluated. Male Swiss mice (4 weeks old) were implanted with an abdominal temperature sensor and randomly assigned to one of the following groups fed isoenergetic and isoproteic diets for 7 d before the experimental trials: group fed the standard AIN-93G diet and exposed to a high ambient temperature (39°C) for 2 h (H-NS); group fed the AIN-93G diet supplemented with l-Gln and exposed to a high temperature (H-Gln); group fed the standard AIN-93G diet and not exposed to a high temperature (control, C-NS). Mice were orally administered diethylenetriaminepentaacetic acid radiolabelled with technetium (99mTc) for the assessment of intestinal permeability or 99mTc-Escherichia coli for the assessment of BT. Heat exposure increased T core (approximately 41°C during the experimental trial), intestinal permeability and BT to the blood and liver (3 h after the experimental trial) in mice from the H-NS group relative to those from the C-NS group. Dietary Gln supplementation attenuated hyperthermia and prevented the increases in intestinal permeability and BT induced by heat exposure. No correlations were observed between the improvements in gastrointestinal function and the attenuation of hyperthermia by Gln. Our findings indicate that dietary Gln supplementation preserved the integrity of the intestinal barrier and reduced the severity of hyperthermia during heat exposure. The findings also indicate that these Gln-mediated effects occurred through independent mechanisms.


Subject(s)
Bacterial Translocation/drug effects , Body Temperature/drug effects , Dietary Supplements , Fever/prevention & control , Glutamine/therapeutic use , Hot Temperature , Intestinal Mucosa/drug effects , Animals , Diet , Escherichia coli , Glutamine/pharmacology , Heat Stroke/prevention & control , Intestinal Mucosa/microbiology , Intestinal Mucosa/pathology , Liver/microbiology , Mice , Permeability
7.
Br J Nutr ; 109(8): 1396-407, 2013 Apr 28.
Article in English | MEDLINE | ID: mdl-22906779

ABSTRACT

Tributyrin (TBT) is a TAG composed of three butyric acids that has beneficial effects on ulcerative colitis due to its trophic, anti-inflammatory, pro-apoptotic and anti-carcinogenic properties. The goal of the present study was to evaluate the efficacy and mechanisms of action of TBT supplementation in the prevention of mucosal damage in experimental colitis. Mice received either a control diet or a TBT-supplemented diet for 15 d. Colitis was induced by dextran sodium sulphate administration during the last 7 d. Mucosal damage and the activation of immune cells and cytokines were determined by histological score, flow cytometry and ELISA. Leucocyte rolling and adhesion were assessed by intravital microscopy. Oxidative stress was determined by monitoring hydroperoxide concentration and evaluating superoxide dismutase (SOD) and catalase activities. Intestinal permeability was analysed using diethylenetriaminepentaacetate acid (99mTcDTPA). Compared with the colitis group, the animals in the colitis+TBT group had reduced mucosal damage and neutrophil and eosinophil mucosal infiltration, which were associated with a higher percentage of regulatory T cells (Treg) and higher levels of transforming growth factor ß and IL-10 in the lamina propria. The level of in vivo leucocyte adhesion in the colon microvasculature was reduced after TBT supplementation. A lower level of hydroperoxide and higher levels of SOD and catalase activities were associated with TBT supplementation. TBT-supplemented mice showed reduced intestinal permeability to the levels intermediate between the control and colitis groups. In conclusion, the present results show that TBT has positive effects on colonic restructuring in experimental colitis. Additionally, TBT supplementation changes the immune response by controlling inflammation and regulating the expression of anti-inflammatory cytokines and Treg.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Antioxidants/pharmacology , Colitis/drug therapy , Colon/drug effects , Intestinal Mucosa/drug effects , Oxidative Stress/drug effects , Triglycerides/pharmacology , Animals , Anti-Inflammatory Agents/therapeutic use , Antioxidants/therapeutic use , Colitis/chemically induced , Colitis/pathology , Colon/immunology , Colon/pathology , Dietary Supplements , Disease Models, Animal , Enzyme-Linked Immunosorbent Assay , Interleukin-10/analysis , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology , Male , Mice , Mice, Inbred C57BL , Oxidative Stress/immunology , Superoxide Dismutase/metabolism , T-Lymphocytes, Regulatory/drug effects , Transforming Growth Factor beta/analysis , Triglycerides/therapeutic use
8.
Lipids ; 47(7): 669-78, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22648862

ABSTRACT

Mucositis affects about 40 % of patients undergoing chemotherapy. Short chain fatty acids (SCFA), mainly butyrate, are claimed to improve mucosal integrity, reduce intestinal permeability and act as anti-inflammatory agents for the colon mucosa. We evaluated the effects of oral administration of SCFA or butyrate in the 5FU-induced mucositis. Mice received water, SCFA or butyrate during all experiment (10 days) and a single dose of 5FU (200 mg/kg) 3 days before euthanasia. We evaluated inflammatory and histological score by morphometry, and by activity of enzymes specific to neutrophil, eosinophil and macrophage and TLR-4, TNF-alpha and IL6 expressions. Intestinal permeability and tight junction protein ZO-1 expression were evaluated. Mice from the 5FU (5-Fluorouracil) group presented weight loss, ulcerations and inflammatory infiltration of neutrophils and eosinophils, increased expression of IL6 and TNF-alpha and increased intestinal permeability. SCFA minimized intestinal damage, reduced ulcerations without affecting intestinal permeability. Butyrate alone was more efficient at improving those parameters than in SCFA solution and also reduced intestinal permeability. The expression of pro-inflammatory cytokines and ZO-1 tended to be higher in the SCFA supplemented but not in the butyrate supplemented group. We showed the beneficial effects of butyrate on intestinal mucositis and its promising function as an adjuvant in the treatment of diseases not only of the colon, but also of the small intestine.


Subject(s)
Butyrates/therapeutic use , Fluorouracil/adverse effects , Mucositis/chemically induced , Mucositis/drug therapy , Administration, Oral , Animals , Butyrates/administration & dosage , Female , Intestinal Mucosa/drug effects , Intestines/drug effects , Mice
9.
Eur J Nutr ; 51(8): 927-37, 2012 Dec.
Article in English | MEDLINE | ID: mdl-22086299

ABSTRACT

PURPOSE: Extracts of the mushroom Agaricus blazei (A. blazei) have been described as possessing immunomodulatory and potentially cancer-protective activities. However, these effects of A. blazei as a functional food have not been fully investigated in vivo. METHODS: Using apolipoprotein E-deficient (ApoE(-/-)) mice, an experimental model of atherosclerosis, we evaluated the effects of 6 or 12 weeks of A. blazei supplementation on the activation of immune cells in the spleen and blood and on the development of atherosclerosis. RESULTS: Food intake, weight gain, blood lipid profile, and glycemia were similar between the groups. To evaluate leukocyte homing and activation, mice were injected with (99m)Tc-radiolabeled leukocytes, which showed enhanced leukocyte migration to the spleen and heart of A. blazei-supplemented animals. Analysis of the spleen showed higher levels of activation of neutrophils, NKT cells, and monocytes as well as increased production of TNF-α and IFN-γ. Circulating NKT cells and monocytes were also more activated in the supplemented group. Atherosclerotic lesion areas were larger in the aorta of supplemented mice and exhibited increased numbers of macrophages and neutrophils and a thinner fibrous cap. A. blazei-induced transcriptional upregulation of molecules linked to macrophage activation (CD36, TLR4), neutrophil chemotaxy (CXCL1), leukocyte adhesion (VCAM-1), and plaque vulnerability (MMP9) were seen after 12 weeks of supplementation. CONCLUSIONS: This is the first in vivo study showing that the immunostimulatory effect of A. blazei has proatherogenic repercussions. A. blazei enhances local and systemic inflammation, upregulating pro-inflammatory molecules, and enhancing leukocyte homing to atherosclerosis sites without affecting the lipoprotein profile.


Subject(s)
Agaricus/chemistry , Atherosclerosis/physiopathology , Dietary Supplements , Immunologic Factors/pharmacology , Inflammation/physiopathology , Animals , Aorta/drug effects , Aorta/physiopathology , Apolipoproteins E/deficiency , Atherosclerosis/immunology , CD36 Antigens/genetics , CD36 Antigens/metabolism , Cell Adhesion , Chemokine CXCL1/genetics , Chemokine CXCL1/metabolism , Disease Models, Animal , Fruiting Bodies, Fungal/chemistry , Inflammation/immunology , Interferon-gamma/immunology , Leukocytes/drug effects , Leukocytes/metabolism , Liver/drug effects , Liver/metabolism , Macrophage Activation/drug effects , Matrix Metalloproteinase 9/genetics , Matrix Metalloproteinase 9/metabolism , Mice , Mice, Knockout , Monocytes/immunology , Natural Killer T-Cells/drug effects , Natural Killer T-Cells/immunology , Neutrophils/immunology , Peroxidase/genetics , Peroxidase/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Spleen/immunology , Spleen/metabolism , Spleen/pathology , Toll-Like Receptor 4/genetics , Toll-Like Receptor 4/metabolism , Tumor Necrosis Factor-alpha/immunology , Up-Regulation , Vascular Cell Adhesion Molecule-1/genetics , Vascular Cell Adhesion Molecule-1/metabolism
10.
Eur J Dermatol ; 21(5): 722-30, 2011.
Article in English | MEDLINE | ID: mdl-21737376

ABSTRACT

Previous studies demonstrated that proteinases from latex of C. candamarcensis act as mitogens on fibroblast and epithelial cells and a subsequent report showed their protective, angiogenic and wound healing effects on gastric ulcers. In this study, we present evidence of skin healing activity by the group of proteinases known as P1G10. By using a hairless mouse model, we compared the healing effect following topical application of various concentrations of P1G10. The data confirm that healing actions take place between 0.1 and 1%, without adverse local irritation or systemic toxicological action after a prolonged period of use. The wound healing effect is unaltered when P1G10 is previously inhibited with iodoacetamide. The low permeation of the hydrosoluble formulation Polawax(®) supports the maintenance of the drug at the site of application. These results extend the healing properties of these groups of enzymes in situations of dermatological trauma and open the way to future clinical applications.


Subject(s)
Cysteine Endopeptidases/pharmacology , Glycoproteins/pharmacology , Latex/chemistry , Phytotherapy , Skin/drug effects , Wound Healing/drug effects , Wound Healing/physiology , Animals , Body Weight/drug effects , Carica/enzymology , Cysteine Endopeptidases/therapeutic use , Dextrans , Electrophoresis, Polyacrylamide Gel , Female , Gels , Glycoproteins/therapeutic use , Male , Mice , Mice, Hairless
11.
Nutrition ; 26(2): 218-23, 2010 Feb.
Article in English | MEDLINE | ID: mdl-19660909

ABSTRACT

OBJECTIVE: To evaluate the effects of arginine on intestinal barrier integrity and bacterial translocation (BT) in mice undergoing intestinal obstruction. METHODS: Mice were divided into 3 groups, treated for 7 d before surgical intervention with isocaloric and isoprotein diets. The ARG group received a diet containing 2% arginine, the IO (intestinal obstruction) and Sham groups, standard chow diet. On the eighth day of treatment, all animals received diethylenetriamine pentaacetic acid (DTPA) solution labeled with 99mTechnetium (99mTc-DTPA) by gavage for intestinal permeability analysis. After 90 min, the animals were anesthetized and the terminal ileum ligated. The Sham group only underwent laparotomy. After 4, 8, and 18 h, blood was collected for radioactivity determination. Samples of ileum were collected 18 h after surgery for histological analysis. In another set of animals, BT was evaluated. After 7 d of treatment, all animals received 10(8) CFU/mL of 99mTc-E.coli by gavage; 90 min later they were submitted to the surgical procedure described above. BT was determined by the uptake of 99mTc-E.coli in blood, mesenteric lymph nodes, liver, spleen, and lungs, assessed 18 h after the surgery. RESULTS: The intestinal permeability and BT were higher in the IO group when compared with the Sham group (P < 0.05). Arginine supplementation reduced intestinal permeability and BT to physiologic levels. Histological analysis showed mucosal ileum preservation in animals treated with arginine. CONCLUSION: Arginine was able to preserve barrier integrity, thus reducing BT.


Subject(s)
Arginine/pharmacology , Bacterial Translocation/drug effects , Escherichia coli/physiology , Intestinal Mucosa/drug effects , Intestinal Obstruction , Animals , Arginine/administration & dosage , Blood/drug effects , Blood/microbiology , Diet , Escherichia coli Infections/prevention & control , Ileum/drug effects , Ileum/microbiology , Ileum/pathology , Intestinal Mucosa/microbiology , Intestinal Mucosa/pathology , Isotopes , Liver/drug effects , Liver/microbiology , Lung/drug effects , Lung/microbiology , Lymph Nodes/drug effects , Lymph Nodes/microbiology , Mice , Pentetic Acid , Permeability , Spleen/drug effects , Spleen/microbiology , Technetium
SELECTION OF CITATIONS
SEARCH DETAIL