Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Therapeutic Methods and Therapies TCIM
Database
Country/Region as subject
Language
Affiliation country
Publication year range
1.
J Nutr Biochem ; 61: 82-90, 2018 11.
Article in English | MEDLINE | ID: mdl-30189366

ABSTRACT

Omega-3 polyunsaturated fatty acids (ω-3 PUFAs) are relevant to fetal and infant growth and development. Objective: to assess whether long-term exposure to dietary ω-3 PUFA imbalance alters pre- and/or postnatal pups' development and reproductive function later in life. Mice dams were fed with ω-3 PUFA Control (soybean oil, 7%), Deficient (sunflower oil, 7%) or Excess (blend oil; 4.2% cod-liver+2.8% soybean) diet before conception and throughout gestation-lactation and later on, their pups received the same diet from weaning to adulthood. Offspring somatic, neurobiological and reproductive parameters were evaluated. Excess pups were lighter during the preweaning period and shorter in length from postnatal day (PND) 7 to 49, compared to Control pups (P<.05). On PND14, the percentage of pups with eye opening in Excess group was lower than those from Control and Deficient groups (P<.05). In Excess female offspring, puberty onset (vaginal opening and first estrus) occurred significantly later and the percentage of parthenogenetic oocytes on PND63 was higher than Control and Deficient ones (P<.05). Deficient pups were shorter in length (males: on PND14, 21, 35 and 49; females: on PND14, 21 and 42) compared with Control pups (P<.05). Deficient offspring exhibited higher percentage of bending spermatozoa compared to Control and Excess offspring (P<.05). These results show that either an excessively high or insufficient ω-3 PUFA consumption prior to conception until adulthood seems inadvisable because of the potential risks of short-term adverse effects on growth and development of the progeny or long-lasting effects on their reproductive maturation and function.


Subject(s)
Fatty Acids, Omega-3/pharmacology , Reproduction/physiology , Animals , Body Weight , Fatty Acids, Omega-3/adverse effects , Female , Lactation , Male , Mice , Oocytes/physiology , Ovulation/physiology , Pregnancy , Pregnancy Outcome , Progesterone/blood , Puberty , Reproduction/drug effects , Semen/drug effects , Semen/physiology , Testosterone/blood
2.
FEBS J ; 278(24): 4881-94, 2011 Dec.
Article in English | MEDLINE | ID: mdl-21981325

ABSTRACT

The Rhodopsin family of G protein coupled receptors (GPCRs) includes the phylogenetic α-group consisting of about 100 human members. The α-group is the only group of GPCRs that has many receptors for biogenic amines which are major drug targets. Several members of this group are orphan receptors and their functions are elusive. In this study we present a detailed phylogenetic and anatomical characterization of the Gpr153 receptor and also attempt to study its functional role. We identified the homologue of Gpr153 in the elephant shark genome and phylogenetic and synteny analyses revealed that Gpr162 and Gpr153 share a common ancestor that split most likely through a duplication event before the divergence of the tetrapods and the teleost lineage. A quantitative real-time PCR study reveals widespread expression of Gpr153 in the central nervous system and all the peripheral tissues investigated. Detailed in situ hybridization on mouse brain showed specifically high expression in the thalamus, cerebellum and the arcuate nucleus. The antisense oligodeoxynucleotide knockdown of Gpr153 caused a slight reduction in food intake and the elevated plus maze test showed significant reduction in the percentage of time spent in the centre square, which points towards a probable role in decision making. This report provides the first detailed characterization of the evolution, expression and primary functional properties of the Gpr153 gene.


Subject(s)
Arcuate Nucleus of Hypothalamus/metabolism , Cerebellum/metabolism , Receptors, G-Protein-Coupled/genetics , Thalamus/metabolism , Amino Acid Sequence , Animals , Behavior, Animal/drug effects , Eating , Evolution, Molecular , Gene Knockdown Techniques , Humans , Mice , Molecular Sequence Data , Phylogeny , Rats , Receptors, G-Protein-Coupled/biosynthesis , Sequence Alignment , Sharks/genetics , Synteny
3.
J Nat Prod ; 72(1): 156-8, 2009 Jan.
Article in English | MEDLINE | ID: mdl-19067593

ABSTRACT

The present study describes the effects of sauroine (1), the main alkaloid obtained from Huperzia saururus, on memory retention and learning. To evaluate this, electrophysiological experiments and behavioral tests (step down) were performed on male Wistar rats. The results showed that 1 improved memory retention in the step-down test, significantly increasing hippocampal plasticity. Thus, 1 seems to be a constituent responsible for the activity claimed in folk medicine for H. saururus in Argentina.


Subject(s)
Alkaloids/isolation & purification , Alkaloids/pharmacology , Behavior/drug effects , Huperzia/chemistry , Memory/drug effects , Plants, Medicinal/chemistry , Alkaloids/chemistry , Animals , Argentina , Hippocampus/drug effects , Male , Motor Activity/drug effects , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL