Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Cell Chem Biol ; 24(5): 624-634.e3, 2017 May 18.
Article in English | MEDLINE | ID: mdl-28434878

ABSTRACT

Today, novel therapeutics are identified in an environment which is intrinsically different from the clinical context in which they are ultimately evaluated. Using molecular phenotyping and an in vitro model of diabetic cardiomyopathy, we show that by quantifying pathway reporter gene expression, molecular phenotyping can cluster compounds based on pathway profiles and dissect associations between pathway activities and disease phenotypes simultaneously. Molecular phenotyping was applicable to compounds with a range of binding specificities and triaged false positives derived from high-content screening assays. The technique identified a class of calcium-signaling modulators that can reverse disease-regulated pathways and phenotypes, which was validated by structurally distinct compounds of relevant classes. Our results advocate for application of molecular phenotyping in early drug discovery, promoting biological relevance as a key selection criterion early in the drug development cascade.


Subject(s)
Computational Biology/methods , Drug Discovery/methods , Phenotype , Data Mining , Drug Evaluation, Preclinical , Humans
2.
Cell Rep ; 9(3): 810-21, 2014 Nov 06.
Article in English | MEDLINE | ID: mdl-25437537

ABSTRACT

Diabetic cardiomyopathy is a complication of type 2 diabetes, with known contributions of lifestyle and genetics. We develop environmentally and genetically driven in vitro models of the condition using human-induced-pluripotent-stem-cell-derived cardiomyocytes. First, we mimic diabetic clinical chemistry to induce a phenotypic surrogate of diabetic cardiomyopathy, observing structural and functional disarray. Next, we consider genetic effects by deriving cardiomyocytes from two diabetic patients with variable disease progression. The cardiomyopathic phenotype is recapitulated in the patient-specific cells basally, with a severity dependent on their original clinical status. These models are incorporated into successive levels of a screening platform, identifying drugs that preserve cardiomyocyte phenotype in vitro during diabetic stress. In this work, we present a patient-specific induced pluripotent stem cell (iPSC) model of a complex metabolic condition, showing the power of this technique for discovery and testing of therapeutic strategies for a disease with ever-increasing clinical significance.


Subject(s)
Diabetic Cardiomyopathies/pathology , Drug Evaluation, Preclinical , Induced Pluripotent Stem Cells/cytology , Models, Biological , Cell Differentiation/drug effects , Humans , Hypertrophy , Induced Pluripotent Stem Cells/drug effects , Lipid Metabolism/drug effects , Lipid Peroxidation/drug effects , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/pathology , Phenotype , Sarcomeres/drug effects , Sarcomeres/pathology , Small Molecule Libraries/analysis , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology
3.
J Biomol Screen ; 18(10): 1203-11, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24071917

ABSTRACT

A major hurdle for cardiovascular disease researchers has been the lack of robust and physiologically relevant cell-based assays for drug discovery. Derivation of cardiomyocytes from human-induced pluripotent stem (iPS) cells at high purity, quality, and quantity enables the development of relevant models of human cardiac disease with source material that meets the demands of high-throughput screening (HTS). Here we demonstrate the utility of iPS cell-derived cardiomyocytes as an in vitro model of cardiac hypertrophy. Exposure of cardiomyocytes to endothelin 1 (ET-1) leads to reactivation of fetal genes, increased cell size, and robust expression of B-type natriuretic peptide (BNP). Using this system, we developed a suite of assays focused on BNP detection, most notably a high-content imaging-based assay designed for phenotypic screening. Miniaturization of this assay to a 384-well format enabled the profiling of a small set of tool compounds known to modulate the hypertrophic response. The assays described here provide consistent and reliable results and have the potential to increase our understanding of the many mechanisms underlying this complex cardiac condition. Moreover, the HTS-compatible workflow allows for the incorporation of human biology into early phases of drug discovery and development.


Subject(s)
Drug Evaluation, Preclinical/methods , Induced Pluripotent Stem Cells/physiology , Myocytes, Cardiac/drug effects , Biomarkers/metabolism , Calcium Channel Blockers/pharmacology , Cardiomegaly/drug therapy , Cell Differentiation , Cell Size , Cells, Cultured , Gene Expression , High-Throughput Screening Assays , Histone Deacetylase Inhibitors/pharmacology , Humans , Imidazoles/pharmacology , Inhibitory Concentration 50 , Myocytes, Cardiac/metabolism , Phenotype , Quinolines/pharmacology , Receptors, Atrial Natriuretic Factor/genetics , Receptors, Atrial Natriuretic Factor/metabolism , Verapamil/pharmacology
4.
PLoS One ; 7(8): e43580, 2012.
Article in English | MEDLINE | ID: mdl-22952710

ABSTRACT

BACKGROUND: Mutations in the leucine-rich repeat kinase-2 (LRRK2) have been linked to Parkinson's disease. Recent studies show that inhibition of LRRK2 kinase activity decreased the level of phosphorylation at its own Ser910 and Ser935, indicating that these sites are prime targets for cellular readouts of LRRK2 inhibition. METHODOLOGY/PRINCIPAL FINDINGS: Using Time-Resolved Förster Resonance Energy Transfer (TR-FRET) technology, we developed a high-throughput cellular assay for monitoring LRRK2 phosphorylation at Ser935. LRRK2-Green Fluorescence Protein (GFP) fusions were expressed in cells via BacMam. Phosphorylation at Ser935 in these cells is detected using a terbium labeled anti-phospho-Ser935 antibody that generates a TR-FRET signal between terbium and GFP. LRRK2 wild-type and G2019S are constitutively phosphorylated at Ser935 in cells as measured by TR-FRET. The phosphorylation level is reduced for the R1441C mutant and little could be detected for the kinase-dead mutant D1994A. The TR-FRET cellular assay was further validated using reported LRRK2 inhibitors including LRRK2-IN-1 and our results confirmed that inhibition of LRRK2 can reduce the phosphorylation level at Ser935. To demonstrate the utility of this assay for screening, we profiled a small library of 1120 compounds. Three known LRRK2 inhibitors were identified and 16 hits were followed up in the TR-FRET and a cytotoxicity assay. Interestingly, out of the top 16 hits, five are known inhibitors of IκB phosphorylation, two CHK1 and two CDC25 inhibitors. Thirteen hits were further tested in a biochemical LRRK2 kinase activity assay and Western blot analysis for their effects on the phosphorylation of Ser910, Ser935, Ser955 and Ser973. CONCLUSIONS/SIGNIFICANCE: We developed a TR-FRET cellular assay for LRRK2 Ser935 phosphorylation that can be applied to the screening for LRRK2 inhibitors. We report for the first time that several compounds such as IKK16, CHK1 inhibitors and GW441756 can inhibit LRRK2 Ser935 phosphorylation in cells and LRRK2 kinase activity in vitro.


Subject(s)
Chemistry, Pharmaceutical/methods , Drug Evaluation, Preclinical/methods , Fluorescence Resonance Energy Transfer/methods , Protein Serine-Threonine Kinases/antagonists & inhibitors , Serine/chemistry , Cell Line, Tumor , Checkpoint Kinase 1 , Drug Design , Gene Library , Green Fluorescent Proteins/metabolism , Humans , Immunoprecipitation/methods , Inhibitory Concentration 50 , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2 , Models, Genetic , Parkinson Disease/drug therapy , Parkinson Disease/genetics , Phosphorylation , Protein Kinases/chemistry
5.
Assay Drug Dev Technol ; 7(4): 348-55, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19656081

ABSTRACT

The posttranslational modification of target substrates by the ubiquitin-like proteins, specifically the small ubiquitin-like modifier (SUMO), has emerged as an essential mechanism to regulate protein function and control intracellular trafficking. Traditional methods for monitoring either the attachment or removal of SUMO, such as gel electrophoresis or western blot, are effective but typically suffer from a lack of throughput. Here, we report the development and application of time-resolved Förster resonance energy transfer (TR-FRET)-based assays capable of detecting SUMOylation or deSUMOylation in a high-throughput screening (HTS) format. Using Ran GTPase-activating protein (RanGAP1) as a model target substrate, we have demonstrated that the SUMOylation of this protein can be detected using LanthaScreen (Invitrogen, Carlsbad, CA) TR-FRET technology. Additionally, we have generated reagents useful for assessing the deSUMOylation activity of a sentrin-specific protease. All assays are performed in 384-well format and display excellent statistical data (Z' > 0.7) with high signal-to-background levels. Together, this collection of tools can be utilized in a modular approach to develop HTS assays for inhibitors of SUMOylation or deSUMOylation.


Subject(s)
Fluorescence Resonance Energy Transfer/methods , Small Ubiquitin-Related Modifier Proteins/chemistry , Drug Discovery/methods , Drug Evaluation, Preclinical/methods , Enzymes/chemistry , Fluorescence Resonance Energy Transfer/instrumentation , GTPase-Activating Proteins/chemistry , Indicators and Reagents , Protein Processing, Post-Translational , Small Ubiquitin-Related Modifier Proteins/isolation & purification , Small Ubiquitin-Related Modifier Proteins/metabolism
6.
J Biomol Screen ; 14(2): 121-32, 2009 Feb.
Article in English | MEDLINE | ID: mdl-19196698

ABSTRACT

The PI3K/AKT/mTOR pathway is central to cell growth and survival, cell cycle regulation, and programmed cell death. Aberrant activation of this signaling cascade is linked to several disease states, and thus many components of the pathway are attractive targets for therapeutic intervention. However, the considerable degree of complexity, crosstalk, and feedback regulation that exists within the pathway (especially with respect to the regulation of mTOR and its complexes) underscores the need for a comprehensive set of cell-based assays to properly identify and characterize small-molecule modulators. Here, the development and application of time-resolved Förster resonance energy transfer (TR-FRET)-based assays to enable the phosphoprotein analysis of key pathway components in a cellular format are reported. The LanthaScreen cellular assay platform uses FRET between a terbium-labeled phosphorylation site-specific antibody and an expressed green fluorescent protein fusion of particular kinase substrate and provides an assay readout that is ratiometric, robust, and amenable to high-throughput screening applications. Assays specific for 5 different targets within the pathway are highlighted: Ser183 and Thr246 on the proline-rich AKT substrate 40 kDa (PRAS40), Ser457 on programmed cell death protein 4 (PDCD4), and Thr308 and Ser473 on AKT. Each assay was evaluated under various experimental conditions and individually optimized for performance. Known pathway agonists and a small panel of commercially available compounds were also used to complete the assay validation. Taken together, these data demonstrate the utility of a related set of cell-based assays to interrogate PI3K/AKT/mTOR signaling and provide a template for the development of similar assays for other targets.


Subject(s)
Drug Evaluation, Preclinical/methods , Phosphoinositide-3 Kinase Inhibitors , Protein Kinase Inhibitors/analysis , Protein Kinases/metabolism , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Cells, Cultured , Humans , Inhibitory Concentration 50 , Models, Biological , Phosphatidylinositol 3-Kinases/metabolism , Protein Kinase Inhibitors/isolation & purification , Protein Kinase Inhibitors/pharmacology , Protein Kinases/analysis , Proto-Oncogene Proteins c-akt/metabolism , Reproducibility of Results , Signal Transduction/drug effects , Signal Transduction/physiology , TOR Serine-Threonine Kinases
7.
Assay Drug Dev Technol ; 6(4): 519-29, 2008 Aug.
Article in English | MEDLINE | ID: mdl-18694336

ABSTRACT

The Janus kinase (JAK) 2/signal transducer and activator of transcription (STAT) 5 pathway is responsible for regulation of cellular responses to a number of cytokines and growth factors. In hematopoietic cells, growth factors such as granulocyte macrophage-colony stimulating factor, interleukin-3, and erythropoietin induce the activation of JAK2, which leads to the phosphorylation, dimerization, and transactivation of STAT5 proteins. Dysregulation of JAK2 by activating mutations such as JAK2V617F results in constitutive phosphorylation of STAT5 and has been linked to numerous myeloproliferative disorders such as polycythemia vera. A cellular LanthaScreen (Invitrogen Corp., Carlsbad, CA) time-resolved Förster resonance energy transfer assay for wild-type JAK2 activity was developed. This assay utilized the growth factor-dependent human erythroleukemia TF1 cell line engineered to express a green fluorescent protein-STAT5 fusion protein. Furthermore, a complementary beta-lactamase reporter gene assay was developed to analyze the transcriptional activity of STAT5 downstream of JAK2 in TF1 cells. The same technologies were applied to the development of cellular assays for the interrogation of the disease-relevant JAK2V617F activating mutant. A small molecule inhibitor and Stealth (Invitrogen Corp.) RNA interference oligonucleotides were used to confirm the involvement of JAK2. Our results suggest that these cellular assays and validation tools represent powerful integrated methods for the analysis of physiological and disease-relevant JAK/STAT pathways within the physiological cellular context.


Subject(s)
Enzyme Inhibitors/pharmacology , Genes, Reporter/genetics , Janus Kinase 2/antagonists & inhibitors , beta-Lactamases/genetics , beta-Lactamases/metabolism , Anti-Bacterial Agents/pharmacology , Cell Proliferation , Cells, Cultured , Drug Evaluation, Preclinical , Fluorescence Resonance Energy Transfer , Genetic Vectors , Humans , Indicators and Reagents , Microscopy, Fluorescence , RNA, Small Interfering/pharmacology , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL