Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Country/Region as subject
Language
Publication year range
1.
Bipolar Disord ; 17(7): 743-52, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26477793

ABSTRACT

OBJECTIVES: The aim of the present study was to measure brain phosphorus-31 magnetic resonance spectroscopy ((31) P MRS) metabolite levels and the creatine kinase reaction forward rate constant (kf ) in subjects with bipolar disorder (BD). METHODS: Subjects with bipolar euthymia (n = 14) or depression (n = 11) were recruited. Healthy comparison subjects (HC) (n = 23) were recruited and matched to subjects with BD on age, gender, and educational level. All studies were performed on a 3-Tesla clinical magnetic resonance imaging system using a (31) P/(1) H double-tuned volume head coil. (31) P spectra were acquired without (1) H-decoupling using magnetization-transfer image-selected in vivo spectroscopy. Metabolite ratios from a brain region that includes the frontal lobe, corpus callosum, thalamus, and occipital lobe are expressed as a percentage of the total phosphorus (TP) signal. Brain pH was also investigated. RESULTS: Beta-nucleoside-triphosphate (ß-NTP/TP) in subjects with bipolar depression was positively correlated with kf (p = 0.039, r(2) = 0.39); similar correlations were not observed in bipolar euthymia or HC. In addition, no differences in kf and brain pH were observed among the three diagnostic groups. A decrease in the ratio of phosphomonoesters to phosphodiesters (PME/PDE) was observed in subjects with bipolar depression relative to HC (p = 0.032). We also observed a trend toward an inverse correlation in bipolar depression characterized by decreased phosphocreatine and increased depression severity. CONCLUSIONS: In our sample, kf was not altered in the euthymic or depressed mood state in BD. However, decreased PME/PDE in subjects with bipolar depression was consistent with differences in membrane turnover. These data provide preliminary support for alterations in phospholipid metabolism and mitochondrial function in bipolar depression.


Subject(s)
Bipolar Disorder , Corpus Callosum/metabolism , Depression/metabolism , Frontal Lobe/metabolism , Phosphocreatine/metabolism , Thalamus/metabolism , Adult , Bipolar Disorder/diagnosis , Bipolar Disorder/metabolism , Bipolar Disorder/psychology , Depression/diagnosis , Female , Humans , Magnetic Resonance Imaging/methods , Magnetic Resonance Spectroscopy/methods , Male , Mitochondria/metabolism , Phospholipids/metabolism , Phosphorus Isotopes/pharmacology , Psychiatric Status Rating Scales
2.
Psychiatry Res ; 222(3): 149-56, 2014 Jun 30.
Article in English | MEDLINE | ID: mdl-24768210

ABSTRACT

Normal brain activity is associated with task-related pH changes. Although central nervous system syndromes associated with significant acidosis and alkalosis are well understood, the effects of less dramatic and chronic changes in brain pH are uncertain. One environmental factor known to alter brain pH is the extreme, acute change in altitude encountered by mountaineers. However, the effect of long-term exposure to moderate altitude has not been studied. The aim of this two-site study was to measure brain intracellular pH and phosphate-bearing metabolite levels at two altitudes in healthy volunteers, using phosphorus-31 magnetic resonance spectroscopy ((31)P-MRS). Increased brain pH and reduced inorganic phosphate (Pi) levels were found in healthy subjects who were long-term residents of Salt Lake City, UT (4720ft/1438m), compared with residents of Belmont, MA (20ft/6m). Brain intracellular pH at the altitude of 4720ft was more alkaline than that observed near sea level. In addition, the ratio of inorganic phosphate to total phosphate signal also shifted toward lower values in the Salt Lake City region compared with the Belmont area. These results suggest that long-term residence at moderate altitude is associated with brain chemical changes.


Subject(s)
Altitude , Brain/metabolism , Phosphates/metabolism , Adult , Contrast Media , Female , Humans , Hydrogen-Ion Concentration , Magnetic Resonance Spectroscopy/methods , Male , Massachusetts , Phosphorus/metabolism , Phosphorus Isotopes , Reference Values , Utah
3.
Arch Gen Psychiatry ; 65(5): 521-31, 2008 May.
Article in English | MEDLINE | ID: mdl-18458204

ABSTRACT

CONTEXT: The pathophysiologic mechanism of major depressive disorder (MDD) has been consistently associated with altered catecholaminergic function, especially with decreased dopamine neurotransmission, by various sources of largely indirect evidence. An instructive paradigm for more directly investigating the relationship between catecholaminergic function and depression has involved the mood response to experimental catecholamine depletion (CD). OBJECTIVES: To determine whether catecholaminergic dysfunction represents a trait abnormality in MDD and to identify brain circuitry abnormalities involved in the pathophysiologic mechanism of MDD. DESIGN: Randomized, double-blind, placebo-controlled, crossover, single-site experimental trial. SETTING: Psychiatric outpatient clinic. PARTICIPANTS: Fifteen unmedicated subjects with MDD in full remission (hereinafter referred to as RMDD subjects) and 13 healthy controls. INTERVENTION: Induction of CD by oral administration of alpha-methylparatyrosine. Sham depletion used identical capsules containing hydrous lactose. MAIN OUTCOME MEASURES: Quantitative positron emission tomography of regional cerebral glucose utilization to study the neural effects of CD and sham depletion. Behavioral assessments included the Montgomery-Asberg Depression Rating Scale and the Snaith-Hamilton Pleasure Scale (anhedonia). RESULTS: Depressive and anhedonic symptoms increased during CD to a greater extent in RMDD subjects than in controls. In both groups, CD increased metabolism in the anteroventral striatum and decreased metabolism in the orbital gyri. In a limbic-cortical-striatal-pallidal-thalamic network previously implicated in MDD, composed of the ventromedial frontal polar cortex, midcingulate and subgenual anterior cingulate cortex, temporopolar cortex, ventral striatum, and thalamus, metabolism increased in RMDD subjects but decreased or remained unchanged in controls. Metabolic changes induced by CD in the left ventromedial frontal polar cortex correlated positively with depressive symptoms, whereas changes in the anteroventral striatum were correlated with anhedonic symptoms. CONCLUSIONS: This study provides direct evidence for catecholaminergic dysfunction as a trait abnormality in MDD. It demonstrates that depressive and anhedonic symptoms as a result of decreased catecholaminergic neurotransmission are related to elevated activity within the limbic-cortical-striatal-pallidal-thalamic circuitry.


Subject(s)
Brain/metabolism , Brain/physiopathology , Catecholamines/antagonists & inhibitors , Catecholamines/deficiency , Depressive Disorder, Major/metabolism , Depressive Disorder, Major/physiopathology , Health Status , Nerve Net/metabolism , Nerve Net/physiopathology , alpha-Methyltyrosine/pharmacology , Adolescent , Adult , Brain/diagnostic imaging , Corpus Striatum/diagnostic imaging , Corpus Striatum/metabolism , Corpus Striatum/physiopathology , Cross-Over Studies , Diagnostic and Statistical Manual of Mental Disorders , Double-Blind Method , Female , Globus Pallidus/diagnostic imaging , Globus Pallidus/metabolism , Globus Pallidus/physiopathology , Glucose/metabolism , Humans , Limbic System/diagnostic imaging , Limbic System/metabolism , Limbic System/physiopathology , Male , Middle Aged , Nerve Net/diagnostic imaging , Positron-Emission Tomography , Prefrontal Cortex/diagnostic imaging , Prefrontal Cortex/metabolism , Prefrontal Cortex/physiopathology , Remission Induction , Thalamus/diagnostic imaging , Thalamus/metabolism , Thalamus/physiopathology , alpha-Methyltyrosine/administration & dosage
SELECTION OF CITATIONS
SEARCH DETAIL