Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters

Database
Country/Region as subject
Language
Publication year range
1.
Proc Biol Sci ; 290(1990): 20221904, 2023 01 11.
Article in English | MEDLINE | ID: mdl-36629107

ABSTRACT

Global change drivers (e.g. climate and land use) affect the species and functional traits observed in a local site but also its dark diversity-the set of species and traits locally suitable but absent. Dark diversity links regional and local scales and, over time, reveals taxa under expansion lags by depicting the potential biodiversity that remains suitable but is absent locally. Since global change effects on biodiversity are both spatially and temporally scale dependent, examining long-term temporal dynamics in observed and dark diversity would be relevant to assessing and foreseeing biodiversity change. Here, we used sedimentary pollen data to examine how both taxonomic and functional observed and dark diversity changed over the past 14 500 years in northern Europe. We found that taxonomic and functional observed and dark diversity increased over time, especially after the Late Glacial and during the Late Holocene. However, dark diversity dynamics revealed expansion lags related to species' functional characteristics (dispersal limitation and stress intolerance) and an extensive functional redundancy when compared to taxa in observed diversity. We highlight that assessing observed and dark diversity dynamics is a promising tool to examine biodiversity change across spatial scales, its possible causes, and functional consequences.


Subject(s)
Life History Traits , Plants , Biodiversity , Pollen , Europe , Ecosystem
2.
Adv Healthc Mater ; 7(2)2018 01.
Article in English | MEDLINE | ID: mdl-29205920

ABSTRACT

Traditional cell culture and animal models utilized for preclinical drug screening have led to high attrition rates of drug candidates in clinical trials due to their low predictive power for human response. Alternative models using human cells to build in vitro biomimetics of the human body with physiologically relevant organ-organ interactions hold great potential to act as "human surrogates" and provide more accurate prediction of drug effects in humans. This review is a comprehensive investigation into the development of tissue-engineered human cell-based microscale multiorgan models, or multiorgan microphysiological systems for drug testing. The evolution from traditional models to macro- and microscale multiorgan systems is discussed in regards to the rationale for recent global efforts in multiorgan microphysiological systems. Current advances in integrating cell culture and on-chip analytical technologies, as well as proof-of-concept applications for these multiorgan microsystems are discussed. Major challenges for the field, such as reproducibility and physiological relevance, are discussed with comparisons of the strengths and weaknesses of various systems to solve these challenges. Conclusions focus on the current development stage of multiorgan microphysiological systems and new trends in the field.


Subject(s)
Lab-On-A-Chip Devices , Tissue Engineering/methods , Animals , Drug Development , Drug Evaluation, Preclinical , Humans
3.
PLoS One ; 7(4): e35033, 2012.
Article in English | MEDLINE | ID: mdl-22536349

ABSTRACT

Parasitic flatworms are responsible for serious infectious diseases that affect humans as well as livestock animals in vast regions of the world. Yet, the drug armamentarium available for treatment of these infections is limited: praziquantel is the single drug currently available for 200 million people infected with Schistosoma spp. and there is justified concern about emergence of drug resistance. Thioredoxin glutathione reductase (TGR) is an essential core enzyme for redox homeostasis in flatworm parasites. In this work, we searched for flatworm TGR inhibitors testing compounds belonging to various families known to inhibit thioredoxin reductase or TGR and also additional electrophilic compounds. Several furoxans and one thiadiazole potently inhibited TGRs from both classes of parasitic flatworms: cestoda (tapeworms) and trematoda (flukes), while several benzofuroxans and a quinoxaline moderately inhibited TGRs. Remarkably, five active compounds from diverse families possessed a phenylsulfonyl group, strongly suggesting that this moiety is a new pharmacophore. The most active inhibitors were further characterized and displayed slow and nearly irreversible binding to TGR. These compounds efficiently killed Echinococcus granulosus larval worms and Fasciola hepatica newly excysted juveniles in vitro at a 20 µM concentration. Our results support the concept that the redox metabolism of flatworm parasites is precarious and particularly susceptible to destabilization, show that furoxans can be used to target both flukes and tapeworms, and identified phenylsulfonyl as a new drug-hit moiety for both classes of flatworm parasites.


Subject(s)
Anticestodal Agents/pharmacology , Antiplatyhelmintic Agents/pharmacology , Echinococcus granulosus/drug effects , Fasciola hepatica/drug effects , Helminth Proteins/antagonists & inhibitors , Multienzyme Complexes/antagonists & inhibitors , NADH, NADPH Oxidoreductases/antagonists & inhibitors , Animals , Anticestodal Agents/chemistry , Anticestodal Agents/toxicity , Antiplatyhelmintic Agents/chemistry , Antiplatyhelmintic Agents/toxicity , Cell Line , Drug Evaluation, Preclinical , Echinococcus granulosus/enzymology , Fasciola hepatica/enzymology , Fibroblasts/drug effects , Helminth Proteins/chemistry , Humans , Larva/drug effects , Larva/enzymology , Lymphocytes/drug effects , Mice , Models, Molecular , Multienzyme Complexes/chemistry , NADH, NADPH Oxidoreductases/chemistry , Oxadiazoles/chemistry , Oxadiazoles/pharmacology , Oxadiazoles/toxicity , Quantum Theory , Quinoxalines/chemistry , Quinoxalines/pharmacology , Quinoxalines/toxicity , Structure-Activity Relationship , Thiadiazoles/chemistry , Thiadiazoles/pharmacology , Thiadiazoles/toxicity
4.
Vaccine ; 29(48): 9057-63, 2011 Nov 08.
Article in English | MEDLINE | ID: mdl-21939713

ABSTRACT

Fasciola hepatica M17 leucine aminopeptidase (FhLAP) is thought to play a role in catabolizing peptides generated by the concerted activity of gut-associated endopeptidases on host polypeptides, thus releasing amino acids to be used in protein anabolism. In this study, a recombinant functional form of this homo hexameric metallopeptidase produced in Escherichia coli was used in combination with adjuvants of different types in a vaccination trial in Corriedale sheep against experimental challenge with F. hepatica metacercariae. The experimental assay consisted of 6 groups of 10 animals; 5 of the groups (1-5) were subcutaneously inoculated at weeks 0 and 4 with 100 µg of rFhLAP mixed with Freund's complete plus incomplete adjuvant (group 1), Alum (group 2), Adyuvac 50 (group 3), DEAE-D (group 4) and Ribi (group 5); the adjuvant control group (group 6) received Freund's adjuvant. Two weeks after the booster, the sheep were orally challenged with 200 metacercariae. Immunization with rFhLAP induced significant reduction in fluke burdens in all vaccinated groups: 83.8% in the Freund's group, 86.7% in the Alum group, 74.4% in the Adyuvac 50 group, 49.8% in the Ribi group and 49.5% in the DEAE-D group compared to the adjuvant control group. Morphometric analysis of recovered liver flukes showed no significant size modifications in the different vaccination groups. All vaccine preparations elicited specific IgG, IgG1 and IgG2 responses. This study shows that a liver fluke vaccine based on rFhLAP combined with different adjuvants significantly reduced worm burden in a ruminant species that was high in animals that received the enzyme along with the commercially approved adjuvants Alum and Adyuvac 50.


Subject(s)
Adjuvants, Immunologic/administration & dosage , Fascioliasis/veterinary , Leucyl Aminopeptidase/immunology , Sheep Diseases/prevention & control , Vaccination/veterinary , Vaccines/immunology , Animals , Antibodies, Helminth/blood , Antibody Formation , Fasciola hepatica/enzymology , Fasciola hepatica/immunology , Fascioliasis/immunology , Fascioliasis/prevention & control , Immunoglobulin G/blood , Male , Parasite Load , Recombinant Proteins/immunology , Sheep , Sheep Diseases/immunology , Sheep, Domestic/immunology , Sheep, Domestic/parasitology , Vaccines/administration & dosage
5.
Mol Biochem Parasitol ; 158(1): 52-64, 2008 Mar.
Article in English | MEDLINE | ID: mdl-18178266

ABSTRACT

Leucyl aminopeptidases (LAP) from different parasitic organisms are attracting attention as relevant players in parasite biology, and consequently being considered as candidates for drug and vaccine design. In fact, the highest protection level achieved in ruminant immunization by a native antigen was previously reported by us, using a purified LAP as immunogen in a sheep trial against fasciolosis. Here, we report the cloning of a full-length cDNA from adult F. hepatica encoding a member of the M17 family of LAP (FhLAP) and functional expression and characterization of the corresponding enzyme. FhLAP was closely related to Schistosoma LAPs, but interestingly distant from their mammalian host's homologues, and was expressed in all stages of the parasite life cycle. The recombinant enzyme, functionally expressed in Escherichia coli, showed a marked amidolytic preference against the synthetic aminopeptidase substrate l-leucine-7-amino-4-methylcoumarin (Leu-AMC) and was also active against Cys-AMC and Met-AMC. Both native and recombinant enzyme were stimulated by the addition of divalent cations predominantly Mn(2+), and strongly inhibited by bestatin and cysteine. Physico-chemical properties, localization by immunoelectron microscopy, MALDI-TOF analysis, and cross-reactivity of anti-rFhLAP immune serum demonstrated that the recombinant enzyme was identical to the previously purified gut-associated LAP from adult F. hepatica. Vaccination trials using rFhLAP for rabbit immunization showed a strong IgG response and a highly significant level of protection after experimental infection with F. hepatica metacercariae, confirming that FhLAP is a relevant candidate for vaccine development.


Subject(s)
Cattle Diseases/immunology , Fasciola hepatica/enzymology , Fasciola hepatica/immunology , Fascioliasis/veterinary , Leucyl Aminopeptidase/immunology , Amino Acid Sequence , Animals , Antibodies, Helminth/blood , Cations, Divalent/pharmacology , Cattle , Cattle Diseases/prevention & control , Cloning, Molecular , Coumarins/metabolism , Cysteine/pharmacology , DNA, Complementary/genetics , Enzyme Activators/pharmacology , Enzyme Inhibitors/pharmacology , Escherichia coli/genetics , Fasciola hepatica/genetics , Fasciola hepatica/isolation & purification , Fascioliasis/immunology , Fascioliasis/prevention & control , Gene Expression , Immunoglobulin G/blood , Leucine/analogs & derivatives , Leucine/metabolism , Leucine/pharmacology , Leucyl Aminopeptidase/genetics , Metals/pharmacology , Molecular Sequence Data , Rabbits , Schistosoma/genetics , Sequence Alignment , Sequence Analysis, DNA , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL