Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
J Toxicol Environ Health A ; 87(5): 185-198, 2024 Mar 03.
Article in English | MEDLINE | ID: mdl-38073488

ABSTRACT

Tellimagrandin-I (TL) and camptothin A (CA) are ellagitannins widely found in diverse plant species. Numerous studies demonstrated their significant biological activities, which include antitumor, antioxidant, and hepatoprotective properties. Despite this protective profile, the effects of TL and CA on DNA have not been comprehensively investigated. Thus, the aim of this study was to determine the mutagenic and antimutagenic effects attributed to TL and CA exposure on Salmonella enterica serovar Typhimurium strains using the Ames test. In addition, the cytotoxic and genotoxic effects were examined on human lymphocytes, employing both trypan blue exclusion and CometChip assay. The antigenotoxic effect was determined following TL and CA exposure in the presence of co-treatment with doxorubicin (DXR). Our results from the Ames test indicated that TL or CA did not display marked mutagenic activity. However, TL or CA demonstrated an ability to protect DNA against the damaging effects of the mutagens 4-nitroquinoline-1-oxide and sodium azide, thereby exhibiting antimutagenic properties. In relation to human lymphocytes, TL or CA did not induce significant cytotoxic or genotoxic actions on these cells. Further, these ellagitannins exhibited an ability to protect DNA from damage induced by DOX during co-treatment, indicating their potential beneficial usefulness as antigenotoxic agents. In conclusion, the protective effects of TL or CA against mutagens, coupled with their absence of genotoxic and cytotoxic effects on human lymphocytes, emphasize their potential therapeutic value in chemopreventive strategies.


Subject(s)
Antimutagenic Agents , Salmonella enterica , Humans , Salmonella typhimurium/genetics , Salmonella enterica/genetics , Hydrolyzable Tannins/pharmacology , Serogroup , Mutagenicity Tests , Mutagens/toxicity , Antimutagenic Agents/pharmacology , Plant Extracts/pharmacology , Carcinogens/pharmacology , DNA/pharmacology , Lymphocytes
2.
J Toxicol Environ Health A ; 85(9): 353-363, 2022 05 03.
Article in English | MEDLINE | ID: mdl-34875975

ABSTRACT

Pedunculagin (PD), an ellagitannin found in different plant species, possesses several pharmaceutical properties, including antitumor, antioxidant, gastroprotective, hepatoprotective, and anti-inflammatory properties. However, the effects of PD alone on DNA remain to be determined. The aim of this study was to investigate the potential cytotoxic, genotoxic, and antigenotoxic activities of PD isolated from Plinia cauliflora seeds using in silico and in vitro assays. To elucidate the biological activities of PD, in silico tools indicative of antioxidant, antineoplastic, and chemopreventive activities of PD were used. Subsequently, the mutagenic/antimutagenic effects of PD were later assessed using bacteria with the Ames test, and the cytotoxic, genotoxic, and antigenotoxic effects utilizing human lymphocytes as evidenced by trypan blue exclusion test and CometChip assay. In silico analysis indicated potential antioxidant, chemopreventive, free radical scavenger, and cytostatic activities of PD. In the Ames test, PD was found to be not mutagenic; however, this plant component protected DNA against damage-mediated by mutagens 4-nitroquinoline-1-oxide and sodium azide. Regarding human lymphocytes, PD alone was cytotoxic and genotoxic; however, it also reduced DNA damage induced by doxorubicin at co- and post-treatment. In conclusion, PD showed genotoxic, antigenotoxic and cytotoxic effects in human lymphocytes and antimutagenic effects in bacteria.


Subject(s)
Antimutagenic Agents , Antineoplastic Agents , Myrtaceae , Antimutagenic Agents/pharmacology , Antineoplastic Agents/pharmacology , Antioxidants/pharmacology , DNA Damage , Humans , Lymphocytes , Mutagens/toxicity , Plant Extracts/pharmacology , Salmonella typhimurium , Seeds , Tannins
3.
Toxicol Appl Pharmacol ; 310: 1-8, 2016 Nov 01.
Article in English | MEDLINE | ID: mdl-27546523

ABSTRACT

Punicalagin is the major ellagitannin constituent from leaves of Lafoensia pacari, a Brazilian medicinal plant widely used for the treatment of peptic ulcer and wound healing. Genotoxic, cytotoxic, antigenotoxic, and anticytotoxic effects of punicalagin were assessed using micronucleus (MN) test and comet assay in mice. Due to the extensive use of L. pacari in the wound healing process, we also assessed the angiogenic activity of punicalagin using the chick chorioallantoic membrane (CAM) angiogenic assay. The highest dose of punicalagin (50mg/kg) showed significant cytotoxic effect by MN test and in the co-treatment with cyclophosphamide (CPA), this cytotoxicity was enhanced. Co-treatment, pre-treatment and post-treatment of punicalagin with CPA led to a significant reduction in the number of DNA breaks and in the frequency of CPA-induced MN, indicating antigenotoxic effect. Using the CAM model, punicalagin exhibited angiogenic activity in all doses mainly at the lowest concentration (12.5µg/µL). Therefore, these findings indicate an effective chemopreventive role of punicalagin and a high capacity to induce DNA repair. Also, the angiogenic activity presented by punicalagin in this study could contribute for the processes of tissue repairing and wound healing.


Subject(s)
Hydrolyzable Tannins/pharmacology , Lythraceae/chemistry , Neovascularization, Physiologic/drug effects , Plant Leaves/chemistry , Animals , Chemoprevention , Chick Embryo , Male , Mice , Mutagenicity Tests
SELECTION OF CITATIONS
SEARCH DETAIL