Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Sci Transl Med ; 5(188): 188le2, 2013 Jun 05.
Article in English | MEDLINE | ID: mdl-23740897

ABSTRACT

Egawa et al. recently showed the value of patient-specific induced pluripotent stem cells (iPSCs) for modeling amyotrophic lateral sclerosis in vitro. Their study and our work highlight the need for complementary assays to detect small, but potentially important, phenotypic differences between control iPSC lines and those carrying disease mutations.


Subject(s)
Amyotrophic Lateral Sclerosis/pathology , Drug Evaluation, Preclinical/methods , Induced Pluripotent Stem Cells/cytology , Motor Neurons/cytology , Humans
2.
J Neurosci ; 33(2): 574-86, 2013 Jan 09.
Article in English | MEDLINE | ID: mdl-23303937

ABSTRACT

Human pluripotent stem cells are a promising source of differentiated cells for developmental studies, cell transplantation, disease modeling, and drug testing. However, their widespread use even for intensely studied cell types like spinal motor neurons is hindered by the long duration and low yields of existing protocols for in vitro differentiation and by the molecular heterogeneity of the populations generated. We report a combination of small molecules that within 3 weeks induce motor neurons at up to 50% abundance and with defined subtype identities of relevance to neurodegenerative disease. Despite their accelerated differentiation, motor neurons expressed combinations of HB9, ISL1, and column-specific markers that mirror those observed in vivo in human embryonic spinal cord. They also exhibited spontaneous and induced activity, and projected axons toward muscles when grafted into developing chick spinal cord. Strikingly, this novel protocol preferentially generates motor neurons expressing markers of limb-innervating lateral motor column motor neurons (FOXP1(+)/LHX3(-)). Access to high-yield cultures of human limb-innervating motor neuron subtypes will facilitate in-depth study of motor neuron subtype-specific properties, disease modeling, and development of large-scale cell-based screening assays.


Subject(s)
Extremities/innervation , Motor Neurons/physiology , Neural Stem Cells/physiology , Animals , Axons/physiology , Calcium/physiology , Calcium Signaling/physiology , Cell Differentiation/physiology , Cells, Cultured , Chick Embryo , DNA, Complementary/biosynthesis , DNA, Complementary/genetics , Female , Forkhead Transcription Factors/biosynthesis , Forkhead Transcription Factors/genetics , Homeodomain Proteins/genetics , Humans , Immunohistochemistry , LIM-Homeodomain Proteins/genetics , Male , Mice , Motor Neurons/metabolism , Neural Stem Cells/metabolism , Patch-Clamp Techniques , RNA-Induced Silencing Complex , Repressor Proteins/biosynthesis , Repressor Proteins/genetics , Spinal Cord/cytology , Spinal Cord/embryology , Stem Cell Transplantation/methods , Transcription Factors/genetics
SELECTION OF CITATIONS
SEARCH DETAIL