Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Publication year range
1.
Nutrients ; 12(9)2020 Aug 25.
Article in English | MEDLINE | ID: mdl-32854375

ABSTRACT

BACKGROUND: Disturbed sleep may negatively influence physical health, cognitive performance, metabolism, and general wellbeing. Nutritional interventions represent a potential non-pharmacological means to increase sleep quality and quantity. OBJECTIVE: (1) Identify an optimal suite of nutritional ingredients and (2) validate the effects of this suite utilising polysomnography, and cognitive and balance tests. METHODS: The optimal and least optimal combinations of six ingredients were identified utilising 55 male participants and a Box-Behnken predictive model. To validate the model, 18 healthy, male, normal sleepers underwent three trials in a randomised, counterbalanced design: (1) optimal drink, (2) least optimal drink, or (3) placebo were provided before bed in a double-blinded manner. Polysomnography was utilised to measure sleep architecture. Cognitive performance, postural sway, and subjective sleep quality, were assessed 30 min after waking. RESULTS: The optimal drink resulted in a significantly shorter sleep onset latency (9.9 ± 12.3 min) when compared to both the least optimal drink (26.1 ± 37.4 min) and the placebo drink (19.6 ± 32.0 min). No other measures of sleep, cognitive performance, postural sway, and subjective sleep quality were different between trials. CONCLUSION: A combination of ingredients, optimised to enhance sleep, significantly reduced sleep onset latency. No detrimental effects on sleep architecture, subjective sleep quality or next day performance were observed.


Subject(s)
Dietary Supplements , Sleep , Adenosine Monophosphate/administration & dosage , Adult , Double-Blind Method , Fruit and Vegetable Juices , Glutamates/administration & dosage , Humans , Lactalbumin/administration & dosage , Male , Polysomnography , Prunus avium , Tryptophan/blood , Valerian
2.
Sports Med ; 47(11): 2201-2218, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28702900

ABSTRACT

Team sport athletes face a variety of nutritional challenges related to recovery during the competitive season. The purpose of this article is to review nutrition strategies related to muscle regeneration, glycogen restoration, fatigue, physical and immune health, and preparation for subsequent training bouts and competitions. Given the limited opportunities to recover between training bouts and games throughout the competitive season, athletes must be deliberate in their recovery strategy. Foundational components of recovery related to protein, carbohydrates, and fluid have been extensively reviewed and accepted. Micronutrients and supplements that may be efficacious for promoting recovery include vitamin D, omega-3 polyunsaturated fatty acids, creatine, collagen/vitamin C, and antioxidants. Curcumin and bromelain may also provide a recovery benefit during the competitive season but future research is warranted prior to incorporating supplemental dosages into the athlete's diet. Air travel poses nutritional challenges related to nutrient timing and quality. Incorporating strategies to consume efficacious micronutrients and ingredients is necessary to support athlete recovery in season.


Subject(s)
Athletes , Dietary Carbohydrates/administration & dosage , Dietary Supplements , Energy Metabolism/physiology , Glycogen/metabolism , Muscle, Skeletal/metabolism , Muscular Diseases/diet therapy , Dietary Carbohydrates/metabolism , Dietary Fats/metabolism , Dietary Proteins/metabolism , Humans , Muscle Fatigue/physiology , Nutritional Physiological Phenomena , Nutritional Requirements , Seasons , Sports
3.
Eur J Appl Physiol ; 116(5): 867-77, 2016 May.
Article in English | MEDLINE | ID: mdl-26908041

ABSTRACT

PURPOSE: To determine effects of intensified training (IT) and carbohydrate supplementation on overreaching and immunity. METHODS: In a randomized, double-blind, crossover design, 13 male cyclists (age 25 ± 6 years, VO2max 72 ± 5 ml/kg/min) completed two 8-day periods of IT. On one occasion, participants ingested 2 % carbohydrate (L-CHO) beverages before, during and after training sessions. On the second occasion, 6 % carbohydrate (H-CHO) solutions were ingested before, during and after training, with the addition of 20 g of protein in the post-exercise beverage. Blood samples were collected before and immediately after incremental exercise to fatigue on days 1 and 9. RESULTS: In both trials, IT resulted in decreased peak power (375 ± 37 vs. 391 ± 37 W, P < 0.001), maximal heart rate (179 ± 8 vs. 190 ± 10 bpm, P < 0.001) and haematocrit (39 ± 2 vs. 42 ± 2 %, P < 0.001), and increased plasma volume (P < 0.001). Resting plasma cortisol increased while plasma ACTH decreased following IT (P < 0.05), with no between-trial differences. Following IT, antigen-stimulated whole blood culture production of IL-1α was higher in L-CHO than H-CHO (0.70 (95 % CI 0.52-0.95) pg/ml versus 0.33 (0.24-0.45) pg/ml, P < 0.01), as was production of IL-1ß (9.3 (95 % CI 7-10.4) pg/ml versus 6.0 (5.0-7.8) pg/ml, P < 0.05). Circulating total leukocytes (P < 0.05) and neutrophils (P < 0.01) at rest increased following IT, as did neutrophil:lymphocyte ratio and percentage CD4+ lymphocytes (P < 0.05), with no between-trial differences. CONCLUSION: IT resulted in symptoms consistent with overreaching, although immunological changes were modest. Higher carbohydrate intake was not able to alleviate physiological/immunological disturbances.


Subject(s)
Bicycling/physiology , Biomarkers/blood , Dietary Carbohydrates/immunology , Exercise/physiology , Physical Endurance/immunology , Physical Endurance/physiology , Adrenocorticotropic Hormone/blood , Adult , CD4-Positive T-Lymphocytes/immunology , Cross-Over Studies , Dietary Supplements , Double-Blind Method , Fatigue/blood , Fatigue/immunology , Humans , Hydrocortisone/blood , Interleukin-1alpha/blood , Interleukin-1beta/blood , Male
SELECTION OF CITATIONS
SEARCH DETAIL