Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters

Therapeutic Methods and Therapies TCIM
Database
Language
Publication year range
1.
Mar Drugs ; 19(12)2021 Dec 11.
Article in English | MEDLINE | ID: mdl-34940701

ABSTRACT

Fucoidans are sulfated, complex, fucose-rich polymers found in brown seaweeds. Fucoidans have been shown to have multiple bioactivities, including anti-inflammatory effects, and are known to inhibit inflammatory processes via a number of pathways such as selectin blockade and enzyme inhibition, and have demonstrated inhibition of inflammatory pathologies in vivo. In this current investigation, fucoidan extracts from Undaria pinnatifida, Fucus vesiculosus, Macrocystis pyrifera, Ascophyllum nodosum, and Laminaria japonica were assessed for modulation of pro-inflammatory cytokine production (TNF-α, IL-1ß, and IL-6) by human peripheral blood mononuclear cells (PBMCs) and in a human macrophage line (THP-1). Fucoidan extracts exhibited no signs of cytotoxicity in THP-1 cells after incubation of 48 h. Additionally, all fucoidan extracts reduced cytokine production in LPS stimulated PBMCs and human THP-1 cells in a dose-dependent fashion. Notably, the 5-30 kDa subfraction from Macrocystis pyrifera was a highly effective inhibitor at lower concentrations. Fucoidan extracts from all species had significant anti-inflammatory effects, but the lowest molecular weight subfractions had maximal effects at low concentrations. These observations on various fucoidan extracts offer insight into strategies that improve their efficacy against inflammation-related pathology. Further studies should be conducted to elucidate the mechanism of action of these extracts.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Plant Extracts/pharmacology , Polysaccharides/pharmacology , Seaweed , Animals , Anti-Inflammatory Agents/chemistry , Aquatic Organisms , Humans , Interleukin-1/metabolism , Interleukin-6/metabolism , Leukocytes, Mononuclear/drug effects , Macrophages/drug effects , Plant Extracts/chemistry , Polysaccharides/chemistry , Tumor Necrosis Factor-alpha/metabolism
2.
Front Endocrinol (Lausanne) ; 12: 615446, 2021.
Article in English | MEDLINE | ID: mdl-33927690

ABSTRACT

Asperuloside is an iridoid glycoside found in many medicinal plants that has produced promising anti-obesity results in animal models. In previous studies, three months of asperuloside administration reduced food intake, body weight, and adipose masses in rats consuming a high fat diet (HFD). However, the mechanisms by which asperuloside exerts its anti-obesity properties were not clarified. Here, we investigated homeostatic and nutrient-sensing mechanisms regulating food intake in mice consuming HFD. We confirmed the anti-obesity properties of asperuloside and, importantly, we identified some mechanisms that could be responsible for its therapeutic effect. Asperuloside reduced body weight and food intake in mice consuming HFD by 10.5 and 12.8% respectively, with no effect on mice eating a standard chow diet. Fasting glucose and plasma insulin were also significantly reduced. Mechanistically, asperuloside significantly reduced hypothalamic mRNA ghrelin, leptin, and pro-opiomelanocortin in mice consuming HFD. The expression of fat lingual receptors (CD36, FFAR1-4), CB1R and sweet lingual receptors (TAS1R2-3) was increased almost 2-fold by the administration of asperuloside. Our findings suggest that asperuloside might exert its therapeutic effects by altering nutrient-sensing receptors in the oral cavity as well as hypothalamic receptors involved in food intake when mice are exposed to obesogenic diets. This signaling pathway is known to influence the subtle hypothalamic equilibrium between energy homeostasis and reward-induced overeating responses. The present pre-clinical study demonstrated that targeting the gustatory system through asperuloside administration could represent a promising and effective new anti-obesity strategy.


Subject(s)
Anti-Obesity Agents/pharmacology , Body Weight/drug effects , Cyclopentane Monoterpenes/pharmacology , Glucosides/pharmacology , Pyrans/pharmacology , Taste Perception/drug effects , Weight Gain/drug effects , Animals , Blood Glucose , Diet, High-Fat , Energy Intake/drug effects , Ghrelin/metabolism , Hypothalamus/drug effects , Hypothalamus/metabolism , Insulin/blood , Leptin/metabolism , Male , Mice , Pro-Opiomelanocortin/metabolism
3.
Chem Biol Interact ; 315: 108911, 2020 Jan 05.
Article in English | MEDLINE | ID: mdl-31786185

ABSTRACT

Over the years, the attention of researchers in the field of modern drug discovery and development has become further intense on the identification of active compounds from plant sources and traditional remedies, as they exhibit higher therapeutic efficacies and improved toxicological profiles. Among the large diversity of plant extracts that have been discovered and explored for their potential therapeutic benefits, asperuloside, an iridoid glycoside, has been proven to provide promising effects as a therapeutic agent for several diseases. Although, this potent substance exists in several genera, it is primarily found in plants belonging to the genus Eucommia. Recent decades have seen a surge in the research on Asperuloside, making it one of the most studied natural products in the field of medicine and pharmacology. In this review, we have attempted to study the various reported mechanisms of asperuloside that form the basis of its wide spectrum of pharmacological activities.


Subject(s)
Cyclopentane Monoterpenes/pharmacology , Cyclopentane Monoterpenes/therapeutic use , Glucosides/pharmacology , Glucosides/therapeutic use , Iridoids/pharmacology , Iridoids/therapeutic use , Pyrans/pharmacology , Pyrans/therapeutic use , Animals , Eucommiaceae/chemistry , Humans , Plant Extracts/pharmacology , Plant Extracts/therapeutic use
4.
PLoS One ; 10(6): e0122061, 2015.
Article in English | MEDLINE | ID: mdl-26047506

ABSTRACT

G protein-coupled receptors (GPCRs) are a class of integral membrane proteins mediating physiological functions fundamental for survival, including energy homeostasis. A few years ago, an amino acid sequence of a novel GPCR gene was identified and named GPR178. In this study, we provide new insights regarding the biological significance of Gpr178 protein, investigating its evolutionary history and tissue distribution as well as examining the relationship between its expression level and feeding status. Our phylogenetic analysis indicated that GPR178 is highly conserved among all animal species investigated, and that GPR178 is not a member of a protein family. Real-time PCR and in situ hybridization revealed wide expression of Gpr178 mRNA in both the brain and periphery, with high expression density in the hypothalamus and brainstem, areas involved in the regulation of food intake. Hence, changes in receptor expression were assessed following several feeding paradigms including starvation and overfeeding. Short-term starvation (12-48h) or food restriction resulted in upregulation of Gpr178 mRNA expression in the brainstem, hypothalamus and prefrontal cortex. Conversely, short-term (48h) exposure to sucrose or Intralipid solutions downregulated Gpr178 mRNA in the brainstem; long-term exposure (10 days) to a palatable high-fat and high-sugar diet resulted in a downregulation of Gpr178 in the amygdala but not in the hypothalamus. Our results indicate that hypothalamic Gpr178 gene expression is altered during acute exposure to starvation or acute exposure to palatable food. Changes in gene expression following palatable diet consumption suggest a possible involvement of Gpr178 in the complex mechanisms of feeding reward.


Subject(s)
Eating , Receptors, G-Protein-Coupled/metabolism , Amygdala/metabolism , Animals , Biological Evolution , Brain/metabolism , Hypothalamus/metabolism , In Situ Hybridization , Male , Mice , Mice, Inbred C57BL , Phylogeny , Prefrontal Cortex/metabolism , RNA, Messenger/metabolism , Rats , Rats, Sprague-Dawley , Real-Time Polymerase Chain Reaction , Receptors, G-Protein-Coupled/classification , Receptors, G-Protein-Coupled/genetics
5.
Gene ; 553(1): 1-6, 2014 Dec 10.
Article in English | MEDLINE | ID: mdl-25275856

ABSTRACT

The Rhodopsin family is a class of integral membrane proteins belonging to G protein-coupled receptors (GPCRs). To date, several orphan GPCRs are still uncharacterized and in this study we present an anatomical characterization of the GPR162 protein and an attempt to describe its functional role. Our results show that GPR162 is widely expressed in GABAergic as well as other neurons within the mouse hippocampus, whereas extensive expression is observed in areas related to energy homeostasis and hedonic feeding such as hypothalamus, amygdala and ventral tegmental area, regions known to be involved in the regulation of palatable food consumption.


Subject(s)
Amygdala/metabolism , Central Nervous System/metabolism , Hypothalamus/metabolism , Receptors, G-Protein-Coupled/metabolism , Ventral Tegmental Area/metabolism , Amygdala/physiology , Animals , Blotting, Western , Cell Line , Feeding Behavior , Hypothalamus/physiology , Mice , Mice, Inbred C57BL , RNA, Small Interfering/genetics , Receptors, G-Protein-Coupled/genetics , Ventral Tegmental Area/physiology
6.
PLoS One ; 6(9): e25261, 2011.
Article in English | MEDLINE | ID: mdl-21980407

ABSTRACT

BACKGROUND: Intrauterine and postnatal overnutrition program hyperphagia, adiposity and glucose intolerance in offspring. Single-nucleotide polymorphisms (SNPs) of the fat mass and obesity associated (FTO) gene have been linked to increased risk of obesity. FTO is highly expressed in hypothalamic regions critical for energy balance and hyperphagic phenotypes were linked with FTO SNPs. As nutrition during fetal development can influence the expression of genes involved in metabolic function, we investigated the impact of maternal obesity on FTO. METHODS: Female Sprague Dawley rats were exposed to chow or high fat diet (HFD) for 5 weeks before mating, throughout gestation and lactation. On postnatal day 1 (PND1), some litters were adjusted to 3 pups (vs. 12 control) to induce postnatal overnutrition. At PND20, rats were weaned onto chow or HFD for 15 weeks. FTO mRNA expression in the hypothalamus and liver, as well as hepatic markers of lipid metabolism were measured. RESULTS: At weaning, hypothalamic FTO mRNA expression was increased significantly in offspring of obese mothers and FTO was correlated with both visceral and epididymal fat mass (P<0.05); body weight approached significance (P = 0.07). Hepatic FTO and Fatty Acid Synthase mRNA expression were decreased by maternal obesity. At 18 weeks, FTO mRNA expression did not differ between groups; however body weight was significantly correlated with hypothalamic FTO. Postnatal HFD feeding significantly reduced hepatic Carnitine Palmitoyltransferase-1a but did not affect the expression of other hepatic markers investigated. FTO was not affected by chronic HFD feeding. SIGNIFICANCE: Maternal obesity significantly impacted FTO expression in both hypothalamus and liver at weaning. Early overexpression of hypothalamic FTO correlated with increased adiposity and later food intake of siblings exposed to HFD suggesting upregulation of FTO may contribute to subsequent hyperphagia, in line with some human data. No effect of maternal obesity was observed on FTO in adulthood.


Subject(s)
Hypothalamus/metabolism , Obesity/metabolism , Proteins/genetics , Alpha-Ketoglutarate-Dependent Dioxygenase FTO , Animals , Diet, High-Fat/adverse effects , Female , Liver/metabolism , Male , Obesity/etiology , RNA, Messenger/genetics , Rats , Rats, Sprague-Dawley , Real-Time Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL