Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Publication year range
1.
Chronobiol Int ; 40(1): 33-62, 2023 01.
Article in English | MEDLINE | ID: mdl-35758140

ABSTRACT

Atherosclerosis, a chronic inflammatory disease of the arteries that appears to have been as prevalent in ancient as in modern civilizations, is predisposing to life-threatening and life-ending cardiac and vascular complications, such as myocardial and cerebral infarctions. The pathogenesis of atherosclerosis involves intima plaque buildup caused by vascular endothelial dysfunction, cholesterol deposition, smooth muscle proliferation, inflammatory cell infiltration and connective tissue accumulation. Hypertension is an independent and controllable risk factor for atherosclerotic cardiovascular disease (CVD). Conversely, atherosclerosis hardens the arterial wall and raises arterial blood pressure. Many CVD patients experience both atherosclerosis and hypertension and are prescribed medications to concurrently mitigate the two disease conditions. A substantial number of publications document that many pathophysiological changes caused by atherosclerosis and hypertension occur in a manner dependent upon circadian clocks or clock gene products. This article reviews progress in the research of circadian regulation of vascular cell function, inflammation, hemostasis and atherothrombosis. In particular, it delineates the relationship of circadian organization with signal transduction and activation of the renin-angiotensin-aldosterone system as well as disturbance of the sleep/wake circadian rhythm, as exemplified by shift work, metabolic syndromes and obstructive sleep apnea (OSA), as promoters and mechanisms of atherogenesis and risk for non-fatal and fatal CVD outcomes. This article additionally updates advances in the clinical management of key biological processes of atherosclerosis to optimally achieve suppression of atherogenesis through chronotherapeutic control of atherogenic/hypertensive pathological sequelae.


Subject(s)
Atherosclerosis , Circadian Rhythm , Humans , Animals , Atherosclerosis/complications , Atherosclerosis/pathology , Atherosclerosis/prevention & control , Genomics , Tunica Intima/pathology , Renin-Angiotensin System , Hypertension/pathology , Heart Disease Risk Factors
2.
Chronobiol Int ; 38(1): 1-26, 2021 01.
Article in English | MEDLINE | ID: mdl-33342316

ABSTRACT

Current hypertension guidelines fail to provide a recommendation on when-to-treat, thus disregarding relevant circadian rhythms that regulate blood pressure (BP) level and 24 h patterning and medication pharmacokinetics and pharmacodynamics. The ideal purpose of ingestion-time (chronopharmacology, i.e. biological rhythm-dependent effects on the kinetics and dynamics of medications, and chronotherapy, i.e. the timing of pharmaceutical and other treatments to optimize efficacy and safety) trials should be to explore the potential impact of endogenous circadian rhythms on the effects of medications. Such investigations and outcome trials mandate adherence to the basic standards of human chronobiology research. In-depth review of the more than 150 human hypertension pharmacology and therapeutic trials published since 1974 that address the differential impact of upon-waking/morning versus at-bedtime/evening schedule of treatment reveals diverse protocols of sometimes suboptimal or defective design and conduct. Many have been "time-of-day," i.e. morning versus evening, rather than circadian-time-based, and some relied on wake-time office BP rather than around-the-clock ambulatory BP measurements (ABPM). Additionally, most past studies have been of too small sample size and thus statistically underpowered. As of yet, there has been no consensual agreement on the proper design, methods and conduct of such trials. This Position Statement recommends ingestion-time hypertension trials to follow minimum guidelines: (i) Recruitment of participants should be restricted to hypertensive individuals diagnosed according to ABPM diagnostic thresholds and of a comparable activity/sleep routine. (ii) Tested treatment-times should be selected according to internal biological time, expressed by the awakening and bed times of the sleep/wake cycle. (iii) ABPM should be the primary or sole method of BP assessment. (iv) The minimum-required features for analysis of the ABPM-determined 24 h BP pattern ought to be the asleep (not "nighttime") BP mean and sleep-time relative BP decline, calculated in reference to the activity/rest cycle per individual. (v) ABPM-obtained BP means should be derived by the so-called adjusted calculation procedure, not by inaccurate arithmetic averages. (vi) ABPM should be performed with validated and calibrated devices at least hourly throughout two or more consecutive 24 h periods (48 h in total) to achieve the highest reproducibility of mean wake-time, sleep-time and 48 h BP values plus the reliable classification of dipping status. (vii) Calculation of minimum required sample size in adherence with proper statistical methods must be provided. (viii) Hypertension chronopharmacology and chronotherapy trials should preferably be randomized double-blind, randomized open-label with blinded-endpoint, or crossover in design, the latter with sufficient washout period between tested treatment-time regimens.


Subject(s)
Blood Pressure Monitoring, Ambulatory , Hypertension , Antihypertensive Agents/therapeutic use , Blood Pressure , Chronotherapy , Circadian Rhythm , Eating , Humans , Hypertension/drug therapy , Reproducibility of Results , Risk Factors , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL