Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
J Prosthet Dent ; 118(6): 771-777, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28385439

ABSTRACT

STATEMENT OF PROBLEM: The color of dental poly(methyl methacrylate) (PMMA) is conventionally rendered by organic and inorganic pigments, which are usually not bonded to the polymer network. Functionalized ceramic pigments can be used to color PMMA, allowing improved chemical interaction with the resin matrix. PURPOSE: The purpose of this in vitro study was to synthesize, functionalize, and characterize pink manganese-doped alumina ceramic pigments. The hypothesis tested was that functionalized ceramic pigments would render pink coloration to a translucent PMMA without jeopardizing its mechanical properties. MATERIAL AND METHODS: Pink alumina powders doped with 1 or 2 mol% of manganese (Al2O3:Mn) were prepared by means of a polymeric precursor method. Pigment (Pig.) particles were functionalized with a silica coating method followed by silanation before preparation of PMMA-based composite resins (5 wt% pigment). The color of composite resins (Pig.1% and Pig.2%) and PMMA controls (Pink and translucent [Trans]) was evaluated (CIELab color coordinates), and their mechanical properties were tested (3-point bending). RESULTS: The microstructure of the pigment particles showed approximately 55-nm nanocrystals of manganese-doped α-alumina clustered into irregular porous particles up to 60 µm. The composite resins and pink PMMA showed similar color parameters (CIE a* pink=20.1, Pig.1%=14.6, Pig.2%=16.0, Trans=0.19, P<.001; CIE b* Pink=17.0, Pig.1%=18.6, Pig.2%=19.0, Trans=2.52, P<.001). No statistical differences were observed in mechanical properties among groups (σf pink=98.4, Pig.1%=98.1, Pig.2%=98.8, trans=89.1, P=.136). CONCLUSIONS: The addition of the functionalized pink ceramic pigments to a translucent PMMA yielded similar coloration to that of the regular pink PMMA used in dentistry and did not jeopardize its mechanical properties.


Subject(s)
Aluminum Oxide , Ceramics , Dental Materials , Dental Prosthesis Design/methods , Manganese , Polymethyl Methacrylate , Prosthesis Coloring , Materials Testing
2.
Dent Mater ; 32(3): 450-60, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26754431

ABSTRACT

OBJECTIVES: This study evaluated the effect of addition of alumina particles (polycrystalline or monocrystalline), with or without silica coating, on the optical and mechanical properties of a porcelain. METHODS: Groups tested were: control (C), polycrystalline alumina (PA), polycrystalline alumina-silica (PAS), monocrystalline alumina (MA), monocrystalline alumina-silica (MAS). Polycrystalline alumina powder was synthesized using a polymeric precursor method; a commercially available monocrystalline alumina powder (sapphire) was acquired. Silica coating was obtained by immersing alumina powders in a tetraethylorthosilicate solution, followed by heat-treatment. Electrostatic stable suspension method was used to ensure homogenous dispersion of the alumina particles within the porcelain powder. The ceramic specimens were obtained by heat-pressing. Microstructure, translucency parameter, contrast ratio, opalescence index, porosity, biaxial flexural strength, roughness, and elastic constants were characterized. RESULTS: A better interaction between glass matrix and silica coated crystalline particles is suggested in some analyses, yet further investigation is needed to confirm it. The materials did not present significant differences in biaxial flexural strength, due to the presence of higher porosity in the groups with alumina addition. Elastic modulus was higher for MA and MAS groups. Also, these were the groups with optical qualities and roughness closer to control. The PA and PAS groups were considerably more opaque as well as rougher. SIGNIFICANCE: Porcelains with addition of monocrystalline particles presented superior esthetic qualities compared to those with polycrystalline particles. In order to eliminate the porosity in the ceramic materials investigated herein, processing parameters need to be optimized as well as different glass frites should be tested.


Subject(s)
Aluminum Oxide/chemistry , Dental Porcelain/chemistry , Ceramics , Coated Materials, Biocompatible/chemistry , Crystallization , Dental Stress Analysis , Hot Temperature , Materials Testing , Particle Size , Pliability , Porosity , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL