Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Therapeutic Methods and Therapies TCIM
Database
Language
Publication year range
1.
Int J Pharm ; 568: 118504, 2019 Sep 10.
Article in English | MEDLINE | ID: mdl-31299339

ABSTRACT

Co-jet-milling drugs and lubricants may enable simultaneous particle size reduction and surface coating to achieve satisfactory aerosolization performance. This study aims to establish the relationship between surface lubricant coverage and aerosolization behavior of a model drug (ciprofloxacin HCl) co-jet-milled with lubricants [magnesium stearate (MgSt) or l-leucine]. The co-jet-milled formulations were characterized for particle size, morphology, cohesion, Carr's index, and aerosolization performance. The surface lubricant coating was assessed by probing surface chemical composition using X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary-ion mass spectrometry (ToF-SIMS). The effects of co-jet-milling on the surface energy and in vitro dissolution of ciprofloxacin were also evaluated. Our results indicated that, in general, the ciprofloxacin co-jet-milled with l-leucine at >0.5% w/w showed a significant higher fine particle fraction (FPF) compared with the ciprofloxacin jet-milled alone. The FPF values plateau at or above 5% w/w for both MgSt and l-leucine. We have established the quantitative correlations between surface lubricant coverage and aerosolization in the tested range for each of the lubricants. More importantly, our results suggest different mechanisms to improve aerosolization for MgSt-coating and l-leucine-coating, respectively: MgSt-coating reduces inter-particulate interactions through the formation of low surface energy coating films, while l-leucine-coating not only reduces the surface energy but also creates rough particle surfaces that reduce inter-particulate contact area. Furthermore, surface coatings with 5% w/w MgSt (which is hydrophobic) did not lead to substantial changes in in vitro dissolution. Our findings have shown that the coating structure/quality and their effects could be highly dependent on the process and the coating material. The findings from this mechanistic study provide fundamental understanding of the critical effects of MgSt and l-leucine surface coverages on aerosolization and powder flow properties of inhalation particles.


Subject(s)
Anti-Bacterial Agents/chemistry , Ciprofloxacin/chemistry , Dry Powder Inhalers , Leucine/chemistry , Lubricants/chemistry , Stearic Acids/chemistry , Aerosols , Drug Compounding , Drug Liberation , Excipients/chemistry , Particle Size , Powders , Surface Properties
2.
Eur J Pharm Sci ; 118: 216-226, 2018 Jun 15.
Article in English | MEDLINE | ID: mdl-29625212

ABSTRACT

This study aimed to develop a high payload dry powder inhalation formulation containing a combination of the first line anti-tubercular drug, pyrazinamide, and the second line drug, moxifloxacin HCl. Individual powders of pyrazinamide (PSD) and moxifloxacin (MSD) and combination powders of the two drugs without (PM) and with 10% l-leucine (PML) and 10% DPPC (PMLD) were produced by spray drying. PSD contained >10 µm crystalline particles and showed poor aerosolization behaviour with a fine particle fraction (FPF) of 18.7 ±â€¯3.4%. PM produced spherical hollow particles with aerodynamic diameter < 5 µm and PML showed improved aerosolization with a high FPF of ~70%. However, PMLD showed a significantly reduced FPF (p > 0.05) compared to PML. Solid state studies and surface elemental analysis by X-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectrometry confirmed the surface coating of particles contained amorphous moxifloxacin and both l-leucine and DPPC over crystalline pyrazinamide. Furthermore, pyrazinamide, moxifloxacin, PML and PMLD were found to display low toxicity to both A549 and Calu-3 cell lines even at a concentration of 100 µg/mL. In conclusion, a combination powder formulation of PML has the potential to deliver a high drug dose to the site of infection resulting in efficient treatment.


Subject(s)
Antitubercular Agents/administration & dosage , Fluoroquinolones/administration & dosage , Pyrazinamide/administration & dosage , Aerosols , Cell Line , Cell Survival/drug effects , Chemistry, Pharmaceutical , Drug Combinations , Drug Stability , Humans , Moxifloxacin , Powders , Tuberculosis, Pulmonary/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL