Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Publication year range
1.
Radiographics ; 42(1): 250-267, 2022.
Article in English | MEDLINE | ID: mdl-34919467

ABSTRACT

Numerous primary and metastatic osseous lesions and incidental osseous findings are encountered at fluorine 18 (18F) fluorodeoxyglucose (FDG) PET/CT. These lesions show varying degrees of FDG uptake. Malignancies are generally more FDG avid than are benign lesions, but many exceptions exist. Although aggressive lesions tend to be more FDG avid than nonaggressive lesions, this concept holds true particularly for lesions of the same histologic subtype. In addition, some benign osseous processes such as Paget disease have variable degrees of FDG avidity on the basis of disease metabolic activity. This creates a diagnostic dilemma for radiologists and clinicians, especially in patients with known malignancies, and can result in unnecessary diagnostic imaging or interventions for incidental osseous lesions. Evaluation of morphologic CT characteristics of osseous lesions at FDG PET/CT can be a valuable adjunct to metabolic analysis to further characterize lesions, enhance diagnostic and staging accuracy, and avoid unnecessary invasive biopsy procedures. The authors review the common primary and metastatic bone lesions at FDG PET/CT, with an emphasis on morphologic CT assessment of lesions to help narrow the differential diagnosis. Imaging manifestations of common incidental nonneoplastic bone lesions at FDG PET/CT are discussed to provide information on differentiation of these lesions from osseous neoplasms. The guidelines of the National Comprehensive Cancer Network (NCCN) for common primary osseous malignancies are also summarized. Online supplemental material is available for this article. ©RSNA, 2021.


Subject(s)
Bone Neoplasms , Fluorodeoxyglucose F18 , Bone Neoplasms/diagnostic imaging , Bone Neoplasms/pathology , Bone and Bones , Humans , Positron Emission Tomography Computed Tomography/methods , Positron-Emission Tomography , Radiopharmaceuticals , Retrospective Studies
2.
Radiographics ; 41(4): 1144-1163, 2021.
Article in English | MEDLINE | ID: mdl-34197249

ABSTRACT

Calvarial abnormalities are usually discovered incidentally on radiologic studies or less commonly manifest with symptoms. This narrative review describes the imaging spectrum of the abnormal calvaria. The extent, multiplicity, and other imaging features of calvarial abnormalities can be combined with the clinical information to establish a final diagnosis or at least narrow the differential considerations. Prior trauma (congenital depression, leptomeningeal cysts, posttraumatic osteolysis), surgical intervention (flap osteonecrosis and burr holes), infection, and inflammatory processes (sarcoidosis) can result in focal bone loss, which may also be seen with idiopathic disorders without (bilateral parietal thinning and Gorham disease) or with (Parry-Romberg syndrome) atrophy of the overlying soft tissues. Anatomic variants (arachnoid granulations, venous lakes, parietal foramina) and certain congenital lesions (epidermoid and dermoid cysts, atretic encephalocele, sinus pericranii, and aplasia cutis congenita) manifest as solitary lytic lesions. Other congenital entities (lacunar skull and dysplasia) display a diffuse pattern of skull involvement. Several benign and malignant primary bone tumors involve the calvaria and manifest as lytic, sclerotic, mixed lytic and sclerotic, or thinning lesions, whereas multifocal disease is mainly due to hematologic or secondary malignancies. Metabolic disorders such as rickets, hyperparathyroidism, renal osteodystrophy, acromegaly, and Paget disease involve the calvaria in a more diffuse pattern. Online supplemental material is available for this article. ©RSNA, 2021.


Subject(s)
Bone Diseases, Metabolic , Osteolysis , Diagnostic Imaging , Encephalocele , Humans , Skull/diagnostic imaging
SELECTION OF CITATIONS
SEARCH DETAIL