Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Int J Mol Sci ; 23(12)2022 Jun 20.
Article in English | MEDLINE | ID: mdl-35743298

ABSTRACT

Ovarian cancer is one of the most lethal gynecological malignancies worldwide, and chemoresistance is a critical obstacle in the clinical management of the disease. Recent studies have suggested that exploiting cancer cell metabolism by applying AMP-activated protein kinase (AMPK)-activating agents and distinctive adjuvant targeted therapies can be a plausible alternative approach in cancer treatment. Therefore, the perspectives about the combination of AMPK activators together with VEGF/PD-1 blockade as a dual-targeted therapy against ovarian cancer were discussed herein. Additionally, ferroptosis, a non-apoptotic regulated cell death triggered by the availability of redox-active iron, have been proposed to be governed by multiple layers of metabolic signalings and can be synergized with immunotherapies. To this end, ferroptosis initiating therapies (FITs) and metabolic rewiring and immunotherapeutic approaches may have substantial clinical potential in combating ovarian cancer development and progression. It is hoped that the viewpoints deliberated in this review would accelerate the translation of remedial concepts into clinical trials and improve the effectiveness of ovarian cancer treatment.


Subject(s)
AMP-Activated Protein Kinases , Ovarian Neoplasms , AMP-Activated Protein Kinases/metabolism , Carcinoma, Ovarian Epithelial , Female , Humans , Lipids/therapeutic use , Ovarian Neoplasms/pathology , Programmed Cell Death 1 Receptor , Vascular Endothelial Growth Factor A/therapeutic use
2.
Pharmacol Res ; 161: 105157, 2020 11.
Article in English | MEDLINE | ID: mdl-32814169

ABSTRACT

Increasing evidence shows that Traditional Chinese Medicine (TCM) has an obvious appeal for cancer treatment, but there is still a lack of scientific investigation of its underlying molecular mechanisms. Bitter melon or bitter gourd (Momordica charantia) is an edible fruit that is commonly consumed, and it is used to cure different diseases in various ancient folk medical practices. We report that a bioactive protein, MAP30, isolated from bitter melon seeds exhibited potent anticancer and anti-chemoresistant effects on ovarian cancer cells. Functional studies revealed that MAP30 inhibited cancer cell migration, cell invasion, and cell proliferation in various ovarian cancer cells but not normal immortalized ovarian epithelial cells. When administered with cisplatin, MAP30 produced a synergistic effect on cisplatin-induced cell cytotoxicity in ovarian cancer cells. When low doses of cisplatin and MAP30 were co-injected intraperitoneally, a remarkable reduction of tumor dissemination and tumor growth was observed in an ovarian cancer ascites mouse model. Notably, blood tests confirmed that MAP30 did not cause any adverse effects on liver and kidney functions in the treated mice. MAP30 activated AMP-activated protein kinase (AMPK) signaling via CaMKKß and induced cell cycle arrest in the S-phase. MAP30 modulated cell metabolism of ovarian cancer cells via suppression of GLUT-1/-3-mediated glucose uptake, adipogenesis, and lipid droplet formation in tumor development and progression. MAP30 also induced an increase in intracellular Ca2+ ion concentration, which triggered ROS-mediated cancer cell death via apoptosis and ferroptosis. Collectively, these findings suggest that natural MAP30 is a non-toxic supplement that may enhance chemotherapeutic outcomes and benefit ovarian cancer patients with peritoneal metastases.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Cisplatin/pharmacology , Energy Metabolism/drug effects , Ferroptosis/drug effects , Momordica charantia , Ovarian Neoplasms/drug therapy , Ribosome Inactivating Proteins, Type 2/pharmacology , AMP-Activated Protein Kinases/metabolism , Animals , Antineoplastic Agents, Phytogenic/isolation & purification , Cell Cycle Checkpoints/drug effects , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Drug Synergism , Female , Glycolysis/drug effects , Humans , Lipogenesis/drug effects , Mice, Inbred BALB C , Mice, Nude , Momordica charantia/chemistry , Neoplasm Invasiveness , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/pathology , Ribosome Inactivating Proteins, Type 2/isolation & purification , Xenograft Model Antitumor Assays
3.
Acta Biochim Biophys Sin (Shanghai) ; 48(4): 301-17, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26764240

ABSTRACT

The development and strategic application of effective anticancer therapies have turned out to be one of the most critical approaches of managing human cancers. Nevertheless, drug resistance is the major obstacle for clinical management of these diseases especially ovarian cancer. In the past years, substantial studies have been carried out with the aim of exploring alternative therapeutic approaches to enhance efficacy of current chemotherapeutic regimes and reduce the side effects caused in order to produce significant advantages in overall survival and to improve patients' quality of life. Targeting cancer cell metabolism by the application of AMP-activated protein kinase (AMPK)-activating agents is believed to be one of the most plausible attempts. AMPK activators such as 5-aminoimidazole-4-carboxamide 1-ß-d-ribofuranoside, A23187, metformin, and bitter melon extract not only prevent cancer progression and metastasis but can also be applied as a supplement to enhance the efficacy of cisplatin-based chemotherapy in human cancers such as ovarian cancer. However, because of the undesirable outcomes along with the frequent toxic side effects of most pharmaceutical AMPK activators that have been utilized in clinical trials, attentions of current studies have been aimed at the identification of replaceable reagents from nutraceuticals or traditional medicines. However, the underlying molecular mechanisms of many nutraceuticals in anticancer still remain obscure. Therefore, better understanding of the functional characterization and regulatory mechanism of natural AMPK activators would help pharmaceutical development in opening an area to intervene ovarian cancer and other human cancers.


Subject(s)
Adenylate Kinase/metabolism , Ovarian Neoplasms/prevention & control , Signal Transduction , Adenosine Monophosphate/metabolism , Adenosine Triphosphate/metabolism , Biphenyl Compounds , Enzyme Activators/pharmacology , Female , Humans , Ovarian Neoplasms/enzymology , Ovarian Neoplasms/metabolism , Pyrones/pharmacology , Thiophenes/pharmacology
4.
Integr Cancer Ther ; 15(3): 376-89, 2016 09.
Article in English | MEDLINE | ID: mdl-26487740

ABSTRACT

UNLABELLED: Objective Acquired chemoresistance is a major obstacle in the clinical management of ovarian cancer. Therefore, searching for alternative therapeutic modalities is urgently needed. Bitter melon (Momordica charantia) is a traditional dietary fruit, but its extract also shows potential medicinal values in human diabetes and cancers. Here, we sought to investigate the extract of bitter melon (BME) in antitumorigenic and cisplatin-induced cytotoxicity in ovarian cancer cells. METHODS: Three varieties of bitter melon were used to prepare the BME. Ovarian cancer cell lines, human immortalized epithelial ovarian cells (HOSEs), and nude mice were used to evaluate the cell cytotoxicity, cisplatin resistance, and tumor inhibitory effect of BME. The molecular mechanism of BME was examined by Western blotting. RESULTS: Cotreatment with BME and cisplatin markedly attenuated tumor growth in vitro and in vivo in a mouse xenograft model, whereas there was no observable toxicity in HOSEs or in nude mice in vivo Interestingly, the antitumorigenic effects of BME varied with different varieties of bitter melon, suggesting that the amount of antitumorigenic substances may vary. Studies of the molecular mechanism demonstrated that BME activates AMP-activated protein kinase (AMPK) in an AMP-independent but CaMKK (Ca(2+)/calmodulin-dependent protein kinase)-dependent manner, exerting anticancer effects through activation of AMPK and suppression of the mTOR/p70S6K and/or the AKT/ERK/FOXM1 (Forkhead Box M1) signaling cascade. CONCLUSION: BME functions as a natural AMPK activator in the inhibition of ovarian cancer cell growth and might be useful as a supplement to improve the efficacy of cisplatin-based chemotherapy in ovarian cancer.


Subject(s)
Carcinogenesis/drug effects , Cisplatin/pharmacology , Drug Resistance, Neoplasm/drug effects , Momordica charantia/chemistry , Ovarian Neoplasms/drug therapy , Plant Extracts/pharmacology , AMP-Activated Protein Kinases/metabolism , Animals , Apoptosis/drug effects , Carcinogenesis/metabolism , Cell Line, Tumor , Female , HEK293 Cells , Humans , Mice , Mice, Nude , Ovarian Neoplasms/metabolism , Phosphorylation/drug effects , Signal Transduction/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL