Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Country/Region as subject
Language
Affiliation country
Publication year range
1.
Chemosphere ; 297: 134123, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35240156

ABSTRACT

Distillery industry generates a huge amount of wastewater, which contains a high strength of organic and inorganic load. Accordingly, this study aims to analyze the physico-chemical pollution parameters and the occurrence of phytotoxic, cytotoxic and genotoxic pollutants in wastewater. The result revealed that values of wastewater parameters were recorded as 13268 mg l-1 (BOD), 25144 mg l-1 (COD), 25144 mg l-1 (TS), and 6634 mg l-1 (phosphate), while pH was alkaline. The organic compounds detected by GC-MS were quercetin 7,3',4'-trimethoxy, octadecadienoic acid, propanoic acid, glycocholic acid methyl ester, cantaxanthin, etc. The Allium cepa was used for the toxicity test with different concentrations of wastewater showed a significant level of reduction in root growth and length after exposure and the maximum reduction was at 25% and 20%. Phytotoxicity studies were performed using Cicer arietinum L. with different concentrations of wastewater, which showed adverse effects on seed germination, root length, and the effect was associated with the increasing concentration of wastewater. A. cepa root tips were used for the analysis of mitotic index (MI), nuclear abnormalities (NA), and chromosomal aberrations (CA). MI was decreasing significantly from 72% (control) to 33%, 22%, 23%, 21%, and 18% at 5%, 10%, 15%, 20%, and 25% wastewater concentration, respectively. The A. cepa root tip cells showed chromosomal aberrations and nuclear abnormalities like vagrant, stickiness, chromosomal loss, c-mitosis, binucleated, micronuclei, and aberrant cell. This study concluded that the wastewater treatment process is insufficient and the discharged waste needs a proper assessment to know the associated health risk.


Subject(s)
Cicer , Environmental Pollutants , Chromosome Aberrations , DNA Damage , Environmental Pollutants/pharmacology , Gas Chromatography-Mass Spectrometry , Meristem , Mitotic Index , Onions/genetics , Plant Roots , Wastewater/chemistry
2.
Environ Res ; 208: 112709, 2022 05 15.
Article in English | MEDLINE | ID: mdl-35032541

ABSTRACT

Elevated levels of physico-chemical pollution including organic pollutants, metals and metalloids were detected in distillery sludges despite of the anaerobic digestion treatment prior to disposal. The concentrations of the metals were (in mg kg-1): Fe (400.98 ± 3.11), Zn (17.21 ± 0.54), Mn (8.32 ± 0.42), Ni (8.00 ± 0.98), Pb (5.09 ± 0.43), Cr (4.00 ± 0.98), and Cu (3.00 ± 0.10). An invasive grass species, Cynodon dactylon L., demonstrated its ability to remediate the distillery waste sludge (DWS) in the field study. All the physico-chemical parameters of the sludge significantly improved (up to 70-75%) in the presence of Cynodon dactylon L. (p < 0.001) than the control with no plant growth. The highest phytoremediation capacity was associated with the uptake of Fe in the root and shoot. Sludge samples collected near the rhizosphere also showed lower amount of organic compounds compared to control sludge samples. Metal resistant Bacillus cereus (RCS-4 MZ520573.1) was isolated from the rhizosphere of Cynodon dactylon L. and showed potential to enhance the process of phytoremediation via plant growth promoting activities such as production of high level of ligninolytic enzymes: manganese peroxidase (35.98 U), lignin peroxidase (23.98 U) and laccase (12.78 U), indole acetic acid (45.87(mgL-1), phosphatase activity (25.76 mg L-1) and siderophore production (23.09 mg L-1). This study presents information on the performance of Cynodon dactylon L., an abundant invasive perennial grass species and its associated plant growth promoting rhizobacteria demonstrated good capacity to remediate and restore contaminated soil contained complex organic and inorganic pollutants, they could be integrated into the disposal system of distillery sludge to improve the treatment efficiency.


Subject(s)
Metals, Heavy , Soil Pollutants , Bacillus cereus , Biodegradation, Environmental , Cynodon , Metals, Heavy/analysis , Sewage , Soil Pollutants/analysis
3.
Environ Geochem Health ; 43(5): 2143-2164, 2021 May.
Article in English | MEDLINE | ID: mdl-33400008

ABSTRACT

Discharged pulp and paper mill wastewater (PPMW) were collected near M/s K. R. pulp and papers Limited, Shahjahanpur, India. Chemical analysis of the wastewater showed high BOD (3653-4180 mg L-1) and COD (17,890-19100 mg L-1) values from two different sampling sites. The levels of total phenol were in the range of 389-432 mg L-1; nitrogen (125-234 mg L-1), sulfate (1926-2098 mg L-1), chloride (3.12-5.43 mg L-1) and lignin (38,950-39,000 mg L-1) along with various heavy metals (Fe, 87-79; Zn, 34-22; Cu, 3.28-2.57; Cd, 1.90-0.36; Ni, 6-5, and Pb, 41.23-36.54 mg L-1) were above the permissible limits recommended by the CPCB and the USEPA. The BOD/COD ratio was < 0.2 which indicated very low biodegradability of the organic matters present in the effluent. The organometallic complex generated from the pulp and paper industry persists in the environment and might be toxic to aquatic organisms. The organic polymers, lignin, metals and ions present in the PPMW were characterized using SEM, EDAX, FTIR, and UV-VIS spectroscopy. The major pollutants detected in the discharged PPMW included nonacosane, heptacosane, octadecanoic acid, hexadecane, and 6-benzamide- 3- [2- [1-(phenylmethyl)-4-piperidinyl] ethyl]-1, 2-benzisoxazole, as well as a group of plant fatty acids classified as EDCs, and mutagenic pollutants. The cytotoxic and androgenic properties of these complex organics were examined. The seed germination test with Phaseolus mungo and cytotoxicity test with Allium cepa showed that at > 20% concentration of PPMW, α-amylase production was inhibited and chromosomal segregation at metaphase and anaphase during cell division was disturbed, which resulted in c-mitosis, sticky chromosomes, and laggard chromosomes. In addition, SEM of the root of A. cepa showed fissures and fractured tissues of the root cap, probably due to the inhibition of auxins that were responsible for root cap formation. The findings indicated A. cepa as a good test model for examining the DNA damage and cytotoxicity by PPMW, and the discharged effluent should be treated at a tertiary stage for environmental protection.


Subject(s)
Onions/drug effects , Toxicity Tests/methods , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity , Biodegradation, Environmental , Biological Oxygen Demand Analysis , Germination/drug effects , India , Lignin/analysis , Metals, Heavy/analysis , Nitrogen/analysis , Phenols/analysis , Seeds/drug effects , Solvents/chemistry , Vigna/drug effects , Waste Disposal, Fluid/methods , Wastewater/chemistry
4.
J Gen Appl Microbiol ; 54(6): 399-407, 2008 Dec.
Article in English | MEDLINE | ID: mdl-19164883

ABSTRACT

Eight aerobic bacterial strains were isolated from pulp paper mill waste and screened for tolerance of kraft lignin (KL) using the nutrient enrichment technique in mineral salt media (MSM) agar plate (15 g/L) amended with different concentrations of KL (100, 200, 300, 400, 500, 600 ppm) along with 1% glucose and 0.5% peptone (w/v) as additional carbon and nitrogen sources. The strains ITRC S6 and ITRC S8 were found to have the most potential for tolerance of the highest concentration of KL. These organisms were characterized by biochemical tests and further 16S rRNA gene (rDNA) sequencing, which showed 96.5% and 95% sequence similarity of ITRC S(6) and ITRC S(8) and confirmed them as Paenibacillus sp. and Bacillus sp., respectively. KL decolorization was routinely monitored with a spectrophotometer and further confirmed by HPLC analysis. Among eight strains, ITRC S(6) and ITRC S(8) were found to degrade 500 mg/L of KL up to 47.97% and 65.58%, respectively, within 144 h of incubation in the presence of 1% glucose and 0.5% (w/v) peptone as a supplementary source of carbon and nitrogen. In the absence of glucose and peptone, these bacteria were unable to utilize KL. The analysis of lignin degradation products by GC-MS analysis revealed the formation of various acids as lignin monomers which resulted in a decrease in pH and a major change in the chromatographic profile of the bacterial degraded sample as compared to the control clear indications of biochemical modification of KL due to the bacterial ligninolytic system by ITRC S(6), namely, acetic acid, propanoic acid, butanoic acid, guaiacol, hexanoic acid, and ITRC S(8), namely acetic acid, propanoic acid, ethanedioic acid, furan carboxylic acid, 2-propanoic acid, butanoic acid, 3-acetoxybutyric acid, propanedioic acid, acetoguiacone, 1,2,3-thiadiazole, 5-carboxaldixime, 4-hydroxy-3,5-dimethoxyphenol, and dibutyl phthalate, indicating the bacterium characteristic to degrade G and S units of lignin polymer.


Subject(s)
Bacillus/classification , Bacillus/isolation & purification , Bacteria, Aerobic/classification , Bacteria, Aerobic/isolation & purification , Industrial Waste , Lignin/metabolism , Paper , Bacillus/genetics , Bacillus/metabolism , Bacteria, Aerobic/genetics , Bacteria, Aerobic/metabolism , Bacterial Typing Techniques , Biodegradation, Environmental , Chromatography, High Pressure Liquid , Color , DNA, Bacterial , DNA, Ribosomal , Gas Chromatography-Mass Spectrometry , Genes, rRNA , Gram-Positive Bacteria/classification , Gram-Positive Bacteria/genetics , Gram-Positive Bacteria/isolation & purification , Gram-Positive Bacteria/metabolism , Molecular Sequence Data , Phylogeny , RNA, Ribosomal, 16S , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL