Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
1.
PLoS Biol ; 20(7): e3001675, 2022 07.
Article in English | MEDLINE | ID: mdl-35900975

ABSTRACT

The ability to recognize abstract features of voice during auditory perception is an intricate feat of human audition. For the listener, this occurs in near-automatic fashion to seamlessly extract complex cues from a highly variable auditory signal. Voice perception depends on specialized regions of auditory cortex, including superior temporal gyrus (STG) and superior temporal sulcus (STS). However, the nature of voice encoding at the cortical level remains poorly understood. We leverage intracerebral recordings across human auditory cortex during presentation of voice and nonvoice acoustic stimuli to examine voice encoding at the cortical level in 8 patient-participants undergoing epilepsy surgery evaluation. We show that voice selectivity increases along the auditory hierarchy from supratemporal plane (STP) to the STG and STS. Results show accurate decoding of vocalizations from human auditory cortical activity even in the complete absence of linguistic content. These findings show an early, less-selective temporal window of neural activity in the STG and STS followed by a sustained, strongly voice-selective window. Encoding models demonstrate divergence in the encoding of acoustic features along the auditory hierarchy, wherein STG/STS responses are best explained by voice category and acoustics, as opposed to acoustic features of voice stimuli alone. This is in contrast to neural activity recorded from STP, in which responses were accounted for by acoustic features. These findings support a model of voice perception that engages categorical encoding mechanisms within STG and STS to facilitate feature extraction.


Subject(s)
Auditory Cortex , Speech Perception , Voice , Acoustic Stimulation , Auditory Cortex/physiology , Auditory Perception/physiology , Brain Mapping/methods , Humans , Magnetic Resonance Imaging , Speech Perception/physiology , Temporal Lobe/physiology
2.
Brain Lang ; 230: 105122, 2022 07.
Article in English | MEDLINE | ID: mdl-35460953

ABSTRACT

Understanding the effects of statistical regularities on speech processing is a central issue in auditory neuroscience. To investigate the effects of distributional covariance on the neural processing of speech features, we introduce and validate a novel approach: decomposition of time-varying signals into patterns of covariation extracted with Principal Component Analysis. We used this decomposition to assay the sensory representation of pitch covariation patterns in native Chinese listeners and non-native learners of Mandarin Chinese tones. Sensory representations were examined using the frequency-following response, a far-field potential that reflects phase-locked activity from neural ensembles along the auditory pathway. We found a more efficient representation of the covariation patterns that accounted for more redundancy in the form of distributional covariance. Notably, long-term language and short-term training experiences enhanced the sensory representation of these covariation patterns.


Subject(s)
Speech Perception , Speech , Acoustic Stimulation , Acoustics , Electroencephalography , Humans , Pitch Perception/physiology , Speech Perception/physiology
3.
J Exp Psychol Gen ; 151(3): 739-748, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34338537

ABSTRACT

Across three experiments, we compare the ability of amateur musicians and nonmusicians in learning artificial auditory and visual categories that can be described as either rule-based (RB) or information-integration (II) category structures. RB categories are optimally learned using a reflective reasoning process, whereas II categories are optimally learned by integrating information from two stimulus dimensions at a reflexive, predecisional processing stage. We found that musicians have selective advantages for learning auditory RB categories, specifically when they are instructed about the dimensions that define the categories. In Experiment 1, musicians enrolled in a music college demonstrated advantages over nonmusicians in learning auditory RB categories defined on frequency and duration dimensions but did not demonstrate differences in learning auditory II categories or either visual RB or II categories. In Experiment 2, a broader online sample of musicians who were not instructed about the dimensions did not demonstrate any advantage in auditory or visual learning. In Experiment 3, an online sample of musicians when given dimension instructions demonstrated early advantages over nonmusicians for auditory RB but not visual RB categories. Musicians do not demonstrate a global categorization advantage. Musicians' category learning advantage is limited to their modality of expertise, is enhanced with dimension instructions, and is specific to categories that can be described with verbalizable rules. (PsycInfo Database Record (c) 2022 APA, all rights reserved).


Subject(s)
Music , Acoustic Stimulation , Auditory Perception , Humans , Spatial Learning
4.
eNeuro ; 8(6)2021.
Article in English | MEDLINE | ID: mdl-34799409

ABSTRACT

Time-varying pitch is a vital cue for human speech perception. Neural processing of time-varying pitch has been extensively assayed using scalp-recorded frequency-following responses (FFRs), an electrophysiological signal thought to reflect integrated phase-locked neural ensemble activity from subcortical auditory areas. Emerging evidence increasingly points to a putative contribution of auditory cortical ensembles to the scalp-recorded FFRs. However, the properties of cortical FFRs and precise characterization of laminar sources are still unclear. Here we used direct human intracortical recordings as well as extracranial and intracranial recordings from macaques and guinea pigs to characterize the properties of cortical sources of FFRs to time-varying pitch patterns. We found robust FFRs in the auditory cortex across all species. We leveraged representational similarity analysis as a translational bridge to characterize similarities between the human and animal models. Laminar recordings in animal models showed FFRs emerging primarily from the thalamorecipient layers of the auditory cortex. FFRs arising from these cortical sources significantly contributed to the scalp-recorded FFRs via volume conduction. Our research paves the way for a wide array of studies to investigate the role of cortical FFRs in auditory perception and plasticity.


Subject(s)
Auditory Cortex , Speech Perception , Acoustic Stimulation , Animals , Electroencephalography , Guinea Pigs , Phonetics , Pitch Perception
5.
Proc Natl Acad Sci U S A ; 118(36)2021 09 07.
Article in English | MEDLINE | ID: mdl-34475209

ABSTRACT

Adults can learn to identify nonnative speech sounds with training, albeit with substantial variability in learning behavior. Increases in behavioral accuracy are associated with increased separability for sound representations in cortical speech areas. However, it remains unclear whether individual auditory neural populations all show the same types of changes with learning, or whether there are heterogeneous encoding patterns. Here, we used high-resolution direct neural recordings to examine local population response patterns, while native English listeners learned to recognize unfamiliar vocal pitch patterns in Mandarin Chinese tones. We found a distributed set of neural populations in bilateral superior temporal gyrus and ventrolateral frontal cortex, where the encoding of Mandarin tones changed throughout training as a function of trial-by-trial accuracy ("learning effect"), including both increases and decreases in the separability of tones. These populations were distinct from populations that showed changes as a function of exposure to the stimuli regardless of trial-by-trial accuracy. These learning effects were driven in part by more variable neural responses to repeated presentations of acoustically identical stimuli. Finally, learning effects could be predicted from speech-evoked activity even before training, suggesting that intrinsic properties of these populations make them amenable to behavior-related changes. Together, these results demonstrate that nonnative speech sound learning involves a wide array of changes in neural representations across a distributed set of brain regions.


Subject(s)
Frontal Lobe/physiology , Learning/physiology , Speech Perception/physiology , Acoustic Stimulation , Adult , Brain/physiology , Evoked Potentials, Auditory/physiology , Female , Humans , Language , Male , Middle Aged , Phonetics , Pitch Perception/physiology , Speech/physiology , Speech Acoustics , Temporal Lobe/physiology
6.
Neuroimage ; 244: 118565, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34543762

ABSTRACT

Despite the multidimensional and temporally fleeting nature of auditory signals we quickly learn to assign novel sounds to behaviorally relevant categories. The neural systems underlying the learning and representation of novel auditory categories are far from understood. Current models argue for a rigid specialization of hierarchically organized core regions that are fine-tuned to extracting and mapping relevant auditory dimensions to meaningful categories. Scaffolded within a dual-learning systems approach, we test a competing hypothesis: the spatial and temporal dynamics of emerging auditory-category representations are not driven by the underlying dimensions but are constrained by category structure and learning strategies. To test these competing models, we used functional Magnetic Resonance Imaging (fMRI) to assess representational dynamics during the feedback-based acquisition of novel non-speech auditory categories with identical dimensions but differing category structures: rule-based (RB) categories, hypothesized to involve an explicit sound-to-rule mapping network, and information integration (II) based categories, involving pre-decisional integration of dimensions via a procedural-based sound-to-reward mapping network. Adults were assigned to either the RB (n = 30, 19 females) or II (n = 30, 22 females) learning tasks. Despite similar behavioral learning accuracies, learning strategies derived from computational modeling and involvements of corticostriatal systems during feedback processing differed across tasks. Spatiotemporal multivariate representational similarity analysis revealed an emerging representation within an auditory sensory-motor pathway exclusively for the II learning task, prominently involving the superior temporal gyrus (STG), inferior frontal gyrus (IFG), and posterior precentral gyrus. In contrast, the RB learning task yielded distributed neural representations within regions involved in cognitive-control and attentional processes that emerged at different time points of learning. Our results unequivocally demonstrate that auditory learners' neural systems are highly flexible and show distinct spatial and temporal patterns that are not dimension-specific but reflect underlying category structures and learning strategies.


Subject(s)
Auditory Cortex/diagnostic imaging , Auditory Perception/physiology , Acoustic Stimulation/methods , Adolescent , Adult , Auditory Pathways/diagnostic imaging , Brain Mapping , Female , Humans , Learning , Magnetic Resonance Imaging , Male , Prefrontal Cortex/diagnostic imaging , Sound , Temporal Lobe/diagnostic imaging , Young Adult
7.
J Speech Lang Hear Res ; 64(9): 3697-3706, 2021 09 14.
Article in English | MEDLINE | ID: mdl-34403278

ABSTRACT

Purpose Listeners shift their listening strategies between lower level acoustic information and higher level semantic information to prioritize maximum speech intelligibility in challenging listening conditions. Although increasing task demands via acoustic degradation modulates lexical-semantic processing, the neural mechanisms underlying different listening strategies are unclear. The current study examined the extent to which encoding of lower level acoustic cues is modulated by task demand and associations with lexical-semantic processes. Method Electroencephalography was acquired while participants listened to sentences in the presence of four-talker babble that contained either higher or lower probability final words. Task difficulty was modulated by time available to process responses. Cortical tracking of speech-neural correlates of acoustic temporal envelope processing-were estimated using temporal response functions. Results Task difficulty did not affect cortical tracking of temporal envelope of speech under challenging listening conditions. Neural indices of lexical-semantic processing (N400 amplitudes) were larger with increased task difficulty. No correlations were observed between the cortical tracking of temporal envelope of speech and lexical-semantic processes, even after controlling for the effect of individualized signal-to-noise ratios. Conclusions Cortical tracking of the temporal envelope of speech and semantic processing are differentially influenced by task difficulty. While increased task demands modulated higher level semantic processing, cortical tracking of the temporal envelope of speech may be influenced by task difficulty primarily when the demand is manipulated in terms of acoustic properties of the stimulus, consistent with an emerging perspective in speech perception.


Subject(s)
Semantics , Speech Perception , Acoustic Stimulation , Acoustics , Electroencephalography , Evoked Potentials , Female , Humans , Male , Speech Intelligibility
8.
Brain Stimul ; 14(4): 990-1001, 2021.
Article in English | MEDLINE | ID: mdl-34154980

ABSTRACT

BACKGROUND: Transcutaneous stimulation of the external ear is thought to recruit afferents of the auricular vagus nerve, providing a means to activate noradrenergic pathways in the central nervous system. Findings from human studies examining the effects of auricular stimulation on noradrenergic biomarkers have been mixed, possibly relating to the limited and variable parameter space explored to date. OBJECTIVE: We tested the extent to which brief pulse trains applied to locations of auricular innervation (canal and concha) elicit acute pupillary responses (PRs) compared to a sham location (lobe). Pulse amplitude and frequency were varied systematically to examine effects on PR features. METHODS: Participants (n = 19) underwent testing in three separate experiments, each with stimulation applied to a different external ear location. Perceptual threshold (PT) was measured at the beginning of each experiment. Pulse trains (∼600 ms) consisting of different amplitude (0.0xPT, 0.8xPT, 1.0xPT, 1.5xPT, 2.0xPT) and frequency (25 Hz, 300 Hz) combinations were administered during eye tracking procedures. RESULTS: Stimulation to all locations elicited PRs which began approximately halfway through the pulse train and peaked shortly after the final pulse (≤1 s). PR size and incidence increased with pulse amplitude and tended to be greatest with canal stimulation. Higher pulse frequency shortened the latency of PR onset and peak dilation. Changes in pupil diameter elicited by pulse trains were weakly associated with baseline pupil diameter. CONCLUSION: (s): Auricular stimulation elicits acute PRs, providing a basis to synchronize neuromodulator release with task-related neural spiking which preclinical studies show is a critical determinant of therapeutic effects. Further work is needed to dissociate contributions from vagal and non-vagal afferents mediating activation of the biomarker.


Subject(s)
Transcutaneous Electric Nerve Stimulation , Vagus Nerve Stimulation , Ear, External , Electric Stimulation , Humans , Vagus Nerve
9.
Atten Percept Psychophys ; 81(4): 1020-1033, 2019 May.
Article in English | MEDLINE | ID: mdl-30565097

ABSTRACT

Speech processing is highly modulated by context. Prior studies examining frequency-following responses (FFRs), an electrophysiological 'neurophonic' potential that faithfully reflects phase-locked activity from neural ensembles within the auditory network, have demonstrated that stimulus context modulates the integrity of speech encoding. The extent to which context-dependent encoding reflects general auditory properties or interactivities between statistical and higher-level linguistic processes remains unexplored. Our study examined whether speech encoding, as reflected by FFRs, is modulated by abstract phonological relationships between a stimulus and surrounding contexts. FFRs were elicited to a Mandarin rising-tone syllable (/ji-TR/, 'second') randomly presented with other syllables in three contexts from 17 native listeners. In a contrastive context, /ji-TR/ occurred with meaning-contrastive high-level-tone syllables (/ji-H/, 'one'). In an allotone context, TR occurred with dipping-tone syllables /ji-D/, a non-meaning-contrastive variant of /ji-TR/. In a repetitive context, the same /ji-TR/ occurred with other speech tokens of /ji-TR/. Consistent with prior work, neural tracking of /ji-TR/ pitch contour was more faithful in the repetitive condition wherein /ji-TR/ occurred more predictably (p = 1) than in the contrastive condition (p = 0.34). Crucially, in the allotone context, neural tracking of /ji-TR/ was more accurate relative to the contrastive context, despite both having an identical transitional probability (p = 0.34). Mechanistically, the non-meaning-contrastive relationship may have augmented the probability to /ji-TR/ occurrence in the allotone context. Results indicate online interactions between bottom-up and top-down mechanisms, which facilitate speech perception. Such interactivities may predictively fine-tune incoming speech encoding using linguistic and statistical information from prior context.


Subject(s)
Acoustic Stimulation/statistics & numerical data , Electrophysiological Phenomena , Linguistics , Pitch Perception/physiology , Speech Perception/physiology , Adult , Female , Humans , Male , Young Adult
10.
J Neurophysiol ; 117(3): 1407-1422, 2017 03 01.
Article in English | MEDLINE | ID: mdl-28077662

ABSTRACT

While lifelong language experience modulates subcortical encoding of pitch patterns, there is emerging evidence that short-term training introduced in adulthood also shapes subcortical pitch encoding. Here we use a cross-language design to examine the stability of language experience-dependent subcortical plasticity over multiple days. We then examine the extent to which behavioral relevance induced by sound-to-category training leads to plastic changes in subcortical pitch encoding in adulthood relative to adolescence, a period of ongoing maturation of subcortical and cortical auditory processing. Frequency-following responses (FFRs), which reflect phase-locked activity from subcortical neural ensembles, were elicited while participants passively listened to pitch patterns reflective of Mandarin tones. In experiment 1, FFRs were recorded across three consecutive days from native Chinese-speaking (n = 10) and English-speaking (n = 10) adults. In experiment 2, FFRs were recorded from native English-speaking adolescents (n = 20) and adults (n = 15) before, during, and immediately after a session of sound-to-category training, as well as a day after training ceased. Experiment 1 demonstrated the stability of language experience-dependent subcortical plasticity in pitch encoding across multiple days of passive exposure to linguistic pitch patterns. In contrast, experiment 2 revealed an enhancement in subcortical pitch encoding that emerged a day after the sound-to-category training, with some developmental differences observed. Taken together, these findings suggest that behavioral relevance is a critical component for the observation of plasticity in the subcortical encoding of pitch.NEW & NOTEWORTHY We examine the timescale of experience-dependent auditory plasticity to linguistically relevant pitch patterns. We find extreme stability in lifelong experience-dependent plasticity. We further demonstrate that subcortical function in adolescents and adults is modulated by a single session of sound-to-category training. Our results suggest that behavioral relevance is a necessary ingredient for neural changes in pitch encoding to be observed throughout human development. These findings contribute to the neurophysiological understanding of long- and short-term experience-dependent modulation of pitch.


Subject(s)
Evoked Potentials, Auditory/physiology , Neuronal Plasticity/physiology , Pitch Perception/physiology , Psycholinguistics , Acoustic Stimulation , Adolescent , Adult , Analysis of Variance , Electroencephalography , Female , Generalization, Psychological , Humans , Learning/physiology , Male , Retention, Psychology , Spectrum Analysis , Statistics as Topic , Young Adult
11.
J Neurophysiol ; 117(2): 594-603, 2017 02 01.
Article in English | MEDLINE | ID: mdl-27832606

ABSTRACT

We examined the mechanics of online experience-dependent auditory plasticity by assessing the influence of prior context on the frequency-following responses (FFRs), which reflect phase-locked responses from neural ensembles within the subcortical auditory system. FFRs were elicited to a Cantonese falling lexical pitch pattern from 24 native speakers of Cantonese in a variable context, wherein the falling pitch pattern randomly occurred in the context of two other linguistic pitch patterns; in a patterned context, wherein, the falling pitch pattern was presented in a predictable sequence along with two other pitch patterns, and in a repetitive context, wherein the falling pitch pattern was presented with 100% probability. We found that neural tracking of the stimulus pitch contour was most faithful and accurate when listening context was patterned and least faithful when the listening context was variable. The patterned context elicited more robust pitch tracking relative to the repetitive context, suggesting that context-dependent plasticity is most robust when the context is predictable but not repetitive. Our study demonstrates a robust influence of prior listening context that works to enhance online neural encoding of linguistic pitch patterns. We interpret these results as indicative of an interplay between contextual processes that are responsive to predictability as well as novelty in the presentation context. NEW & NOTEWORTHY: Human auditory perception in dynamic listening environments requires fine-tuning of sensory signal based on behaviorally relevant regularities in listening context, i.e., online experience-dependent plasticity. Our finding suggests what partly underlie online experience-dependent plasticity are interplaying contextual processes in the subcortical auditory system that are responsive to predictability as well as novelty in listening context. These findings add to the literature that looks to establish the neurophysiological bases of auditory system plasticity, a central issue in auditory neuroscience.


Subject(s)
Brain/physiology , Linguistics , Neuronal Plasticity/physiology , Pitch Perception/physiology , Acoustic Stimulation , Adolescent , Adult , Analysis of Variance , Electroencephalography , Female , Humans , Male , Young Adult
12.
Cereb Cortex ; 26(4): 1409-1420, 2016 Apr.
Article in English | MEDLINE | ID: mdl-25331600

ABSTRACT

One of the most difficult category learning problems for humans is learning nonnative speech categories. While feedback-based category training can enhance speech learning, the mechanisms underlying these benefits are unclear. In this functional magnetic resonance imaging study, we investigated neural and computational mechanisms underlying feedback-dependent speech category learning in adults. Positive feedback activated a large corticostriatal network including the dorsolateral prefrontal cortex, inferior parietal lobule, middle temporal gyrus, caudate, putamen, and the ventral striatum. Successful learning was contingent upon the activity of domain-general category learning systems: the fast-learning reflective system, involving the dorsolateral prefrontal cortex that develops and tests explicit rules based on the feedback content, and the slow-learning reflexive system, involving the putamen in which the stimuli are implicitly associated with category responses based on the reward value in feedback. Computational modeling of response strategies revealed significant use of reflective strategies early in training and greater use of reflexive strategies later in training. Reflexive strategy use was associated with increased activation in the putamen. Our results demonstrate a critical role for the reflexive corticostriatal learning system as a function of response strategy and proficiency during speech category learning.


Subject(s)
Formative Feedback , Learning/physiology , Multilingualism , Prefrontal Cortex/physiology , Putamen/physiology , Speech Perception/physiology , Acoustic Stimulation , Adolescent , Adult , Brain Mapping , Female , Humans , Magnetic Resonance Imaging , Male , Neural Pathways/physiology , Young Adult
13.
Atten Percept Psychophys ; 78(2): 566-82, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26542400

ABSTRACT

Learning nonnative speech categories is often considered a challenging task in adulthood. This difficulty is driven by cross-language differences in weighting critical auditory dimensions that differentiate speech categories. For example, previous studies have shown that differentiating Mandarin tonal categories requires attending to dimensions related to pitch height and direction. Relative to native speakers of Mandarin, the pitch direction dimension is underweighted by native English speakers. In the current study, we examined the effect of explicit instructions (dimension instruction) on native English speakers' Mandarin tone category learning within the framework of a dual-learning systems (DLS) model. This model predicts that successful speech category learning is initially mediated by an explicit, reflective learning system that frequently utilizes unidimensional rules, with an eventual switch to a more implicit, reflexive learning system that utilizes multidimensional rules. Participants were explicitly instructed to focus and/or ignore the pitch height dimension, the pitch direction dimension, or were given no explicit prime. Our results show that instruction instructing participants to focus on pitch direction, and instruction diverting attention away from pitch height, resulted in enhanced tone categorization. Computational modeling of participant responses suggested that instruction related to pitch direction led to faster and more frequent use of multidimensional reflexive strategies and enhanced perceptual selectivity along the previously underweighted pitch direction dimension.


Subject(s)
Acoustic Stimulation/methods , Learning/classification , Learning/physiology , Speech Perception/physiology , Speech/classification , Speech/physiology , Adult , Attention/physiology , Female , Humans , Language , Male
14.
J Speech Lang Hear Res ; 57(5): 1908-18, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24687206

ABSTRACT

PURPOSE: The authors sought to investigate interactions among intelligibility-enhancing speech cues (i.e., semantic context, clearly produced speech, and visual information) across a range of masking conditions. METHOD: Sentence recognition in noise was assessed for 29 normal-hearing listeners. Testing included semantically normal and anomalous sentences, conversational and clear speaking styles, auditory-only (AO) and audiovisual (AV) presentation modalities, and 4 different maskers (2-talker babble, 4-talker babble, 8-talker babble, and speech-shaped noise). RESULTS: Semantic context, clear speech, and visual input all improved intelligibility but also interacted with one another and with masking condition. Semantic context was beneficial across all maskers in AV conditions but only in speech-shaped noise in AO conditions. Clear speech provided the most benefit for AV speech with semantically anomalous targets. Finally, listeners were better able to take advantage of visual information for meaningful versus anomalous sentences and for clear versus conversational speech. CONCLUSION: Because intelligibility-enhancing cues influence each other and depend on masking condition, multiple maskers and enhancement cues should be used to accurately assess individuals' speech-in-noise perception.


Subject(s)
Noise , Perceptual Masking/physiology , Speech Intelligibility/physiology , Speech Perception/physiology , Acoustic Stimulation , Adolescent , Adult , Female , Humans , Male , Semantics , Speech Discrimination Tests , Young Adult
15.
J Acoust Soc Am ; 135(1): 389-99, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24437779

ABSTRACT

This study investigated the extent to which noise impacts normal-hearing young adults' speech processing of sentences that vary in intelligibility. Intelligibility and recognition memory in noise were examined for conversational and clear speech sentences recorded in quiet (quiet speech, QS) and in response to the environmental noise (noise-adapted speech, NAS). Results showed that (1) increased intelligibility through conversational-to-clear speech modifications led to improved recognition memory and (2) NAS presented a more naturalistic speech adaptation to noise compared to QS, leading to more accurate word recognition and enhanced sentence recognition memory. These results demonstrate that acoustic-phonetic modifications implemented in listener-oriented speech enhance speech-in-noise processing beyond word recognition. Effortful speech processing in challenging listening environments can thus be improved by speaking style adaptations on the part of the talker. In addition to enhanced intelligibility, a substantial improvement in recognition memory can be achieved through speaker adaptations to the environment and to the listener when in adverse conditions.


Subject(s)
Noise/adverse effects , Perceptual Masking , Recognition, Psychology , Speech Intelligibility , Speech Perception , Acoustic Stimulation , Acoustics , Adaptation, Psychological , Adolescent , Adult , Audiometry, Speech , Humans , Phonetics , Signal-To-Noise Ratio , Young Adult
16.
J Acoust Soc Am ; 134(5): EL387-93, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24181980

ABSTRACT

The role of visual cues in native listeners' perception of speech produced by nonnative speakers has not been extensively studied. Native perception of English sentences produced by native English and Korean speakers in audio-only and audiovisual conditions was examined. Korean speakers were rated as more accented in audiovisual than in the audio-only condition. Visual cues enhanced word intelligibility for native English speech but less so for Korean-accented speech. Reduced intelligibility of Korean-accented audiovisual speech was associated with implicit visual biases, suggesting that listener-related factors partially influence the efficiency of audiovisual integration for nonnative speech perception.


Subject(s)
Cues , Facial Expression , Language , Speech Intelligibility , Speech Perception , Visual Perception , Acoustic Stimulation , Adolescent , Adult , Audiometry, Speech , Auditory Threshold , Female , Humans , Male , Noise/adverse effects , Perceptual Masking , Photic Stimulation , Sound Spectrography , Speech Acoustics , Video Recording , Young Adult
17.
J Cogn Neurosci ; 23(10): 2690-700, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21268667

ABSTRACT

Human speech is composed of two types of information, related to content (lexical information, i.e., "what" is being said [e.g., words]) and to the speaker (indexical information, i.e., "who" is talking [e.g., voices]). The extent to which lexical versus indexical information is represented separately or integrally in the brain is unresolved. In the current experiment, we use short-term fMRI adaptation to address this issue. Participants performed a loudness judgment task during which single or multiple sets of words/pseudowords were repeated with single (repeat) or multiple talkers (speaker-change) conditions while BOLD responses were collected. As reflected by adaptation fMRI, the left posterior middle temporal gyrus, a crucial component of the ventral auditory stream performing sound-to-meaning computations ("what" pathway), showed sensitivity to lexical as well as indexical information. Previous studies have suggested that speaker information is abstracted during this stage of auditory word processing. Here, we demonstrate that indexical information is strongly coupled with word information. These findings are consistent with a plethora of behavioral results that have demonstrated that changes to speaker-related information can influence lexical processing.


Subject(s)
Brain Mapping , Brain/physiology , Speech/physiology , Acoustic Stimulation/methods , Adult , Analysis of Variance , Brain/blood supply , Female , Functional Laterality/physiology , Humans , Image Processing, Computer-Assisted , Judgment , Magnetic Resonance Imaging , Male , Mental Processes/physiology , Oxygen/blood , Reaction Time/physiology , Vocabulary , Young Adult
18.
Hear Res ; 270(1-2): 151-7, 2010 Dec 01.
Article in English | MEDLINE | ID: mdl-20708671

ABSTRACT

Children often have difficulty understanding speech in challenging listening environments. In the absence of peripheral hearing loss, these speech perception difficulties may arise from dysfunction at more central levels in the auditory system, including subcortical structures. We examined brainstem encoding of pitch in a speech syllable in 38 school-age children. In children with poor speech-in-noise perception, we find impaired encoding of the fundamental frequency and the second harmonic, two important cues for pitch perception. Pitch, an essential factor in speaker identification, aids the listener in tracking a specific voice from a background of voices. These results suggest that the robustness of subcortical neural encoding of pitch features in time-varying signals is a key factor in determining success with perceiving speech in noise.


Subject(s)
Auditory Pathways/physiology , Brain Stem/physiology , Noise/adverse effects , Perceptual Masking , Pitch Perception , Speech Intelligibility , Speech Perception , Acoustic Stimulation , Adolescent , Audiometry, Pure-Tone , Audiometry, Speech , Auditory Threshold , Child , Comprehension , Cues , Evoked Potentials, Auditory, Brain Stem , Female , Humans , Male , Speech Acoustics , Time Factors
19.
Nat Rev Neurosci ; 11(8): 599-605, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20648064

ABSTRACT

The effects of music training in relation to brain plasticity have caused excitement, evident from the popularity of books on this topic among scientists and the general public. Neuroscience research has shown that music training leads to changes throughout the auditory system that prime musicians for listening challenges beyond music processing. This effect of music training suggests that, akin to physical exercise and its impact on body fitness, music is a resource that tones the brain for auditory fitness. Therefore, the role of music in shaping individual development deserves consideration.


Subject(s)
Acoustic Stimulation , Auditory Perception/physiology , Music/psychology , Neuronal Plasticity/physiology , Acoustic Stimulation/methods , Acoustic Stimulation/trends , Humans , Reaction Time/physiology
20.
J Acoust Soc Am ; 128(1): 456-65, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20649239

ABSTRACT

Speech sound patterns can be discerned using multiple acoustic cues. The relative weighting of these cues is known to be language-specific. Speech-sound training in adults induces changes in cue-weighting such that relevant acoustic cues are emphasized. In the current study, the extent to which individual variability in cue weighting contributes to differential success in learning to use foreign sound patterns was examined. Sixteen English-speaking adult participants underwent a sound-to-meaning training paradigm, during which they learned to incorporate Mandarin linguistic pitch contours into words. In addition to cognitive tests, measures of pitch pattern discrimination and identification were collected from all participants. Reaction time data from the discrimination task was subjected to 3-way multidimensional scaling to extract dimensions underlying tone perception. Two dimensions relating to pitch height and pitch direction were found to underlie non-native tone space. Good learners attended more to pitch direction relative to poor learners, before and after training. Training increased the ability to identify and label pitch direction. The results demonstrate that variability in the ability to successfully learn to use pitch in lexical contexts can be explained by pre-training differences in cue-weighting.


Subject(s)
Cues , Language , Phonetics , Recognition, Psychology , Signal Detection, Psychological , Speech Acoustics , Speech Perception , Acoustic Stimulation , Adult , Cognition , Female , Humans , Male , Pattern Recognition, Physiological , Pitch Discrimination , Psychoacoustics , Reaction Time , Time Factors , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL