Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
1.
Fitoterapia ; 174: 105862, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38354823

ABSTRACT

Angiotensin I-converting enzyme (ACE) inhibition is currently a common method for the treatment and control of hypertension. In this study, four new (1-4) and one known (5) cycloartane triterpenoids were isolated from the leaves of Swietenia macrophylla by chromatographic techniques and identified by their spectroscopic data and a comprehensive comparison of published data. The triterpenoids were evaluated for their ACE inhibitory potential using in vitro inhibition assays and in silico methods. The inhibition assay and enzyme kinetics results showed that the most active triterpenoid, compound 4, inhibited ACE in a mixed-type manner with an IC50 value of 57.7 ± 6.07 µM. Computer simulations revealed that compound 4 reduces the catalytic efficiency of ACE by competitive insertion into the active pocket blocking the substrate, and the binding activity occurs mainly through hydrogen bonds and hydrophobic interactions. The study showed that S. macrophylla can be a source of bioactive material and the ACE inhibitory triterpenoid could be a potential antihypertensive agent.


Subject(s)
Meliaceae , Triterpenes , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Angiotensin-Converting Enzyme Inhibitors/chemistry , Angiotensin-Converting Enzyme Inhibitors/metabolism , Molecular Docking Simulation , Molecular Structure , Triterpenes/pharmacology , Meliaceae/chemistry , Angiotensins
2.
J Tradit Complement Med ; 13(5): 479-488, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37693102

ABSTRACT

Background and aim: In Taiwan, Vitis thunbergii var. taiwaniana (VTT) is used in traditional medicine and as a local tea. VTT rich in resveratrol and resveratrol oligomers have been reported to exhibit anti-obesity and anti-hypertensive activities in animal models; however, no studies have investigated type 2 diabetes mellitus (T2DM) treatments. This study aimed to investigate the anti-T2DM effects of resveratrol tetramers isolated from the VTT in nicotinamide/streptozotocin (STZ)-induced Institute of Cancer Research (ICR) mice. Experimental procedure: The oral glucose tolerance test (OGTT) was used to imitate postprandial blood glucose (BG) regulations in mice by pre-treatment with VTT extracts, resveratrol tetramers of vitisin A, vitisin B, and hopeaphenol 30 min before glucose loads. Vitisin B (50 mg/kg) was administered to treat T2DM-ICR mice once daily for 28 days to investigate its hypoglycemic activity. Results and conclusion: Mice pre-treated with VTT-S-95EE, or vitisin B (100 mg/kg) 30-min before glucose loading showed significant reductions (P < 0.001) in the area under the curve at 120-min (BG-AUC0-120) than those without pre-treatment with VTT-S-95 E E or vitisin B. Vitisin B-treated T2DM mice showed hypoglycemic activities via a reduction in plasma dipeptidyl peptidase (DPP)-IV activities to maintain insulin actions and differed significantly than those of untreated T2DM mice (P < 0.05), and also reduced BG-AUC0-120 and insulin-AUC0-120 in the OGTT.These in vivo results showed that VTT containing vitisin B would be beneficial for developing nutraceuticals and/or functional foods for glycemic control in patients with T2DM, which should be investigated further.

3.
Nutrients ; 15(3)2023 Jan 26.
Article in English | MEDLINE | ID: mdl-36771342

ABSTRACT

Chronic kidney disease (CKD) remains a public health problem. Certain dietary supplements can assist in the prevention of CKD progression. In this regard, resveratrol is a polyphenol and has a potential therapeutic role in alleviating CKD. We previously utilized butyrate in order to improve the bioavailability of resveratrol via esterification and generated a resveratrol butyrate monoester (RBM). In this study, the hypothesis that RBM supplementation is able to protect against kidney dysfunction and hypertension was tested by using an adenine-induced CKD model. For this purpose, three-week-old male Sprague Dawley rats (n = 40) were equally categorized into: group 1-CN (sham control); group 2-CKD (adenine-fed rats); group 3-REV (CKD rats treated with 50 mg/L resveratrol); group 4-MEL (CKD rats treated with 25 mg/L RBM); and group 5-MEH (CKD rats treated with 50 mg/L RBM). At the end of a 12-week period, the rats were then euthanized. The adenine-fed rats displayed hypertension and kidney dysfunction, which were attenuated by dietary supplementation with RBM. The CKD-induced hypertension coincided with: decreased nitric oxide (NO) bioavailability; augmented renal protein expression of a (pro)renin receptor and angiotensin II type 1 receptor; and increased oxidative stress damage. Additionally, RBM and resveratrol supplementation shaped distinct gut microbiota profiles in the adenine-treated CKD rats. The positive effect of high-dose RBM was shown together with an increased abundance of the genera Duncaniella, Ligilactobacillus, and Monoglobus, as well as a decrease in Eubacterium and Schaedierella. Importantly, the mechanism of action of the RBM supplementation may be related to the restoration of NO, rebalancing of the RAS, a reduction in oxidative stress, and alterations to the gut microbiota. Moreover, RBM supplementation shows promise for the purposes of improving CKD outcomes and hypertension. As such, further translation to human studies is warranted.


Subject(s)
Hypertension , Renal Insufficiency, Chronic , Animals , Male , Rats , Adenine/pharmacology , Butyrates/metabolism , Dietary Supplements , Kidney/metabolism , Oxidative Stress , Rats, Sprague-Dawley , Resveratrol/pharmacology
4.
Molecules ; 27(7)2022 Mar 22.
Article in English | MEDLINE | ID: mdl-35408453

ABSTRACT

(1) Background: The current research intended to obtain functional compounds from agricultural by-products. A functional tea seed flavonoid, kaempferol-3-O-[2-O-ß-d-xylopyranosyl-6-O-α-L-rhanmopyranosyl]-ß-d-glucopyranoside (KXRG), was isolated from tea seed dregs. We further determined its chemical structure and evaluated the protective effects of KXRG against local and systemic inflammation in vivo; (2) Methods: First, cytotoxicity and proinflammatory cytokine release were examined in a cell-culture system. The biological activities of KXRG were investigated in a mouse model of ear edema, and from inflammatory damage to organs as demonstrated by histologic examination, in addition to brain function evaluation using the Y-maze test. Serum biochemical analysis and western blotting were utilized to explore the related cellular factors; (3) Results: KXRG inhibited IL-6 in RAW264.7 cells at a non-toxic concentration. Further experiments confirmed that KXRG exerted a stronger effect than indomethacin in terms of the prevention of 12-O-tetradecanoylphorbol acetate (TPA)-induced ear inflammation in a mouse model. KXRG feeding significantly prevented LPS-induced small intestine, liver, and kidney inflammatory damage, as demonstrated by histologic examination. KXRG also significantly improved LPS-induced cognitive impairments. Serum biochemical analysis showed that KXRG elevated antioxidant capacity and reduced levels of proinflammatory cytokines. Western blotting revealed that KXRG reduced the COX-2 expression induced by LPS in mouse tissues; (4) Conclusions: KXRG can be purified from agricultural waste, and hence it is inexpensive, with large amounts of raw materials available. Thus, KXRG has strong potential for further development as a wide-use anti-systemic inflammation drug to prevent human disease.


Subject(s)
Cognitive Dysfunction , Lipopolysaccharides , Animals , Anti-Inflammatory Agents/therapeutic use , Cognitive Dysfunction/drug therapy , Cytokines/metabolism , Disease Models, Animal , Inflammation/metabolism , Kaempferols , Lipopolysaccharides/adverse effects , Mice , Tea/chemistry
5.
Phytomedicine ; 99: 154025, 2022 May.
Article in English | MEDLINE | ID: mdl-35272244

ABSTRACT

BACKGROUND: Microglia-related neuroinflammation is associated with a variety of neurodegenerative diseases. Flavonoids have demonstrated different pharmacological effects, such as antioxidation, neuroprotection and anti-inflammation However, the effect of flavonoid 6-methoxyflavone (6-MeOF) on microglia-mediated neuroinflammation remain unknown. PURPOSE: The current study aim to study the antineuroinflammatory effects of 6-MeOF in lipopolysaccharide- (LPS-) induced microglia in vitro and in vivo. METHODS: Pretreatment of BV2 microglia cells with 6-MeOF for 1 h then stimulated with LPS (100 ng/ml) for 24 h. The expression levels of pro-inflammatory factors, NO and reactive oxygen species (ROS) were performed by the enzyme-linked immunosorbent assay (ELISA), Griess assay and flow cytometry. Western blotting was used to assess MAPK, NF-κB signal transducer and antioxidant enzymes-related proteins. Analysis of ROS and microglial morphology was confirmed in the zebrafish and mice brain, respectively. RESULTS: Our results demonstrated that 6-MeOF dose-dependently prevent cell death and decreased the levels of pro-inflammatory mediators in LPS-stimulated BV2 microglia cells. Phosphorylated NF-κB/IκB and TLR4/MyD88/p38 MAPK/JNK proteins after exposure to 6-MeOF was suppressed in LPS-activated BV-2 microglial cells. 6-MeOF also presented antioxidant activity by reduction of NO, ROS, iNOS and COX-2 and the induction of the level of HO-1 and NQO1 expressions in LPS-activated BV2 microglial cells. Furthermore, we demonstrated that 6-MeOF inhibited LPS-induced NO generation in an experimental zebrafish model and prevent the LPS-induced microgliosis in the prefrontal cortex and substantia nigra of mice. CONCLUSION: These results explored that 6-MeOF possesses potential as anti-inflammatory and anti-oxidant agents against microglia-associated neuroinflammatory disorders.

6.
Biosci Biotechnol Biochem ; 86(5): 646-654, 2022 Apr 21.
Article in English | MEDLINE | ID: mdl-35218182

ABSTRACT

Atopic dermatitis (AD) is a chronic inflammatory and pruritic disease; it can be treated by inhibiting inflammation. Sarcodia suiae sp. is an edible, artificially cultivable red algae with multiple bioactivities. We assessed the anti-inflammatory activity of the ethyl acetate fraction of S. suiae sp. ethanol extract (PD1) on 1-chloro-2,4-dinitrochlorobenzene (DNCB)-induced AD-like lesions. Results show that PD1 alleviated symptoms and significantly decreased clinical dermatitis score. PD1 inhibited serum immunoglobulin E expression and alleviated swelling in the spleen and subiliac lymph nodes. In skin tissues, PD1 alleviated aberrant hyperplasia, decreased epidermal thickness, and decreased the accumulation of mast cells. PD1 mediated the recovery of skin barrier-related proteins, such as claudin-1 and filaggrin. Our study demonstrated that PD1 has anti-inflammatory effects, alleviates AD symptoms, inhibits inflammatory responses in skin tissues, and restores barrier function in DNCB-induced AD mice. These findings reveal that S. suiae sp. extract provides an alternative protective option against AD.


Subject(s)
Dermatitis, Atopic , Rhodophyta , Acetates , Animals , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Cytokines/metabolism , Dermatitis, Atopic/chemically induced , Dermatitis, Atopic/drug therapy , Dermatitis, Atopic/metabolism , Dinitrochlorobenzene/metabolism , Dinitrochlorobenzene/pharmacology , Dinitrochlorobenzene/therapeutic use , Ethanol/metabolism , Inflammation/metabolism , Mice , Mice, Inbred BALB C , Plant Extracts/metabolism , Rhodophyta/metabolism , Skin
7.
Biomedicines ; 10(2)2022 Jan 26.
Article in English | MEDLINE | ID: mdl-35203483

ABSTRACT

Resveratrol has been reported to exhibit neuroprotective activities in vitro and in vivo. However, little is known about resveratrol tetramers of hopeaphenol, vitisin A, and vitisin B with the same molecular mass in the improvement of degenerative disorders. In this study, two 95% ethanol extracts (95EE) from stem parts of Vitis thunbergii Sieb. & Zucc. (VT-95EE) and from the root (R) parts of Vitis thunbergii var. taiwaniana (VTT-R-95EE) showed comparable acetylcholinesterase (AChE) inhibitory activities. It was found that VT-95EE and VTT-R-95EE showed different distribution patterns of identified resveratrol and resveratrol tetramers of hopeaphenol, vitisin A, and vitisin B based on the analyses of HPLC chromatographic profiles. The hopeaphenol, vitisin A, and vitisin B, showed AChE and monoamine oxidase-B inhibitions in a dose-dependent manner, among which vitisin B and vitisin A exhibited much better activities than those of resveratrol, and had neuroprotective activities against methylglyoxal-induced SH-SY5Y cell deaths. The scopolamine-induced amnesiac ICR mice treated with VT-95EE and its ethyl acetate-partitioned fraction (VT-95EE-EA) at doses of 200 and 400 mg/kg, or vitisin A at a dose of 40 mg/kg, but not vitisin B (40 mg/kg), were shown significantly to improve the impaired learning behaviors by passive avoidance tests compared to those in the control without drug treatments (p < 0.05). Compared to mice in the control group, the brain extracts in the vitisin A-treated mice or donepezil-treated mice showed significant reductions in AChE activities and malondialdehyde levels (p < 0.05), and elevated the reduced protein expressions of brain-derived neurotrophic factor (BDNF) and BDNF receptor, tropomyosin receptor kinase B (TrkB). These results revealed that vitisin A was the active constituent in the VT-95EE and VTT-95EE, and the VT medicinal plant and that the endemic variety of VTT has potential in developing functional foods for an unmet medical need for neurodegenerative disorders.

8.
Int J Med Sci ; 18(8): 1848-1856, 2021.
Article in English | MEDLINE | ID: mdl-33746602

ABSTRACT

The intestines have been recognized as important tissues for metabolic regulation, including glycemic control, but their vital role in promoting the anti-diabetic effects of bitter melon, the fruit of Momordica charantia L, has seldom been characterized, nor acknowledged. Evidence suggests that bitter melon constituents can have substantial interactions with the intestinal epithelial cells before circulating to other tissues. We therefore characterized the effects of bitter melon extract (BME) on intestinal epithelial cells. BME was found to contain substantial amounts of carbohydrates, proteins, and triterpenoids. TNF-α induced insulin resistance in an enterocyte cell line of IEC-18 cells, and BME promoted glucose utilization of the insulin-resistant cells. Further analysis suggested that the increased glucose consumption was a result of the combined effects of insulin sensitizing and insulin substitution functions of BME. The functions of insulin substitution were likely generated due to the activation of AMP-activated protein kinase. Meanwhile, BME acted as a glucagon-like peptide 1 (GLP-1) secretagogue on enteroendocrine cells, which may be mediated by the activation of bitter-taste receptors. Therefore, BME possesses insulin sensitizing, insulin substitution, and GLP-1 secretagogue functions upon intestinal cells. These effects of BME on intestinal cells likely play a significant part in the anti-diabetic action of bitter melon.


Subject(s)
Diabetes Mellitus, Type 1/drug therapy , Diabetes Mellitus, Type 2/drug therapy , Intestinal Mucosa/drug effects , Momordica charantia/chemistry , Plant Extracts/pharmacology , Cell Line , Enterocytes/drug effects , Enterocytes/metabolism , Enteroendocrine Cells/drug effects , Enteroendocrine Cells/metabolism , Glucagon-Like Peptide 1/metabolism , Glucose/metabolism , Humans , Insulin/metabolism , Insulin Resistance , Intestinal Mucosa/metabolism , Plant Extracts/therapeutic use
9.
Molecules ; 26(3)2021 Jan 22.
Article in English | MEDLINE | ID: mdl-33499307

ABSTRACT

Cutibacterium acnes (formerly Propionibacterium acnes) is one of the major bacterial species responsible for acne vulgaris. Numerous bioactive compounds from Momordica charantia Linn. var. abbreviata Ser. have been isolated and examined for many years. In this study, we evaluated the suppressive effect of two cucurbitane-type triterpenoids, 5ß,19-epoxycucurbita-6,23-dien-3ß,19,25-triol (Kuguacin R; KR) and 3ß,7ß,25-trihydroxycucurbita-5,23-dien-19-al (TCD) on live C. acnes-stimulated in vitro and in vivo inflammatory responses. Using human THP-1 monocytes, KR or TCD suppressed C. acnes-induced production of interleukin (IL)-1ß, IL-6 and IL-8 at least above 56% or 45%, as well as gene expression of these three pro-inflammatory cytokines. However, a significantly strong inhibitory effect on production and expression of tumor necrosis factor (TNF)-α was not observed. Both cucurbitanes inhibited C. acnes-induced activation of the myeloid differentiation primary response 88 (MyD88) (up to 62%) and mitogen-activated protein kinases (MAPK) (at least 36%). Furthermore, TCD suppressed the expression of pro-caspase-1 and cleaved caspase-1 (p10). In a separate study, KR or TCD decreased C. acnes-stimulated mouse ear edema by ear thickness (20% or 14%), and reduced IL-1ß-expressing leukocytes and neutrophils in mouse ears. We demonstrated that KR and TCD are potential anti-inflammatory agents for modulating C. acnes-induced inflammation in vitro and in vivo.


Subject(s)
Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Cucurbitacins/chemistry , Cucurbitacins/pharmacology , Inflammation/drug therapy , Momordica charantia/chemistry , Triterpenes/chemistry , Triterpenes/pharmacology , Acne Vulgaris/drug therapy , Acne Vulgaris/immunology , Acne Vulgaris/microbiology , Animals , Cytokines/biosynthesis , Cytokines/genetics , Disease Models, Animal , Glycosides/chemistry , Glycosides/pharmacology , Gram-Positive Bacterial Infections/drug therapy , Gram-Positive Bacterial Infections/immunology , Gram-Positive Bacterial Infections/microbiology , Humans , Inflammation/immunology , Inflammation/microbiology , Male , Mice , Mice, Inbred ICR , Monocytes/drug effects , Monocytes/immunology , Monocytes/metabolism , Phytotherapy , Plant Extracts/chemistry , Plant Extracts/pharmacology , Propionibacteriaceae/pathogenicity , RNA, Messenger/genetics , RNA, Messenger/metabolism , THP-1 Cells
10.
Int J Mol Sci ; 21(10)2020 May 25.
Article in English | MEDLINE | ID: mdl-32466337

ABSTRACT

(+)-Bornyl p-coumarate is an active substance that is abundant in the Piper betle stem and has been shown to possess bioactivity against bacteria and a strong antioxidative effect. In the current study, we examined the actions of (+)-bornyl p-coumarate against A2058 and A375 melanoma cells. The inhibition effects of (+)-bornyl p-coumarate on these cell lines were assessed by 3-(4,5-Dimethylthiazol-2-yl)-2,5- diphenyltetrazolium bromide (MTT) assay and the underlying mechanisms were identified by immunostaining, flow cytometry and western blotting of proteins associated with apoptosis and autophagy. Our results demonstrated that (+)-bornyl p-coumarate inhibited melanoma cell proliferation and caused loss of mitochondrial membrane potential, demonstrating treatment induced apoptosis. In addition, western blotting revealed that the process is mediated by caspase-dependent pathways, release of cytochrome C, activation of pro-apoptotic proteins (Bax, Bad and caspase-3/-9) and suppression of anti-apoptotic proteins (Bcl-2, Bcl-xl and Mcl-1). Also, the upregulated expressions of p-PERK, p-eIF2α, ATF4 and CCAAT/enhancer-binding protein (C/EBP)-homologous protein (CHOP) after treatment indicated that (+)-bornyl p-coumarate caused apoptosis via endoplasmic reticulum (ER) stress. Moreover, increased expressions of beclin-1, Atg3, Atg5, p62, LC3-I and LC3-II proteins and suppression by autophagic inhibitor 3-methyladenine (3-MA), indicated that (+)-bornyl p-coumarate triggered autophagy in the melanoma cells. In conclusion, our findings demonstrated that (+)-bornyl p-coumarate suppressed human melanoma cell growth and should be further investigated with regards to its potential use as a chemotherapy drug for the treatment of human melanoma.


Subject(s)
Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Autophagy/drug effects , Coumaric Acids/pharmacology , Melanoma/metabolism , Piper betle/chemistry , Activating Transcription Factor 4/genetics , Activating Transcription Factor 4/metabolism , Cell Line, Tumor , Humans , Membrane Potential, Mitochondrial , Plant Extracts/pharmacology , Plant Stems/chemistry , eIF-2 Kinase/genetics , eIF-2 Kinase/metabolism
11.
Molecules ; 24(23)2019 Nov 23.
Article in English | MEDLINE | ID: mdl-31771186

ABSTRACT

One new iridoid, namely neonanin C (1) one monocyclic iridoid ring-opened derivative namely neonanin D (2), two new bis-iridoid derivatives namely reticunin A (3) and reticunin B (4) with sixteen known compounds (5-20) were isolated from the stems of Neonauclea reticulata (Havil.) Merr. These new structures were determined by the detailed analysis of spectroscopic data and comparison with the data of known analogues. Compounds 1-20 were evaluated for inhibition of nitric oxide (NO) production in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages cell line. The results showed that all compounds exhibited no obvious cytotoxicity compared to the control group and five compounds including isoboonein (7), syringaresinol (10), (+)-medioresinol (12), protocatechuic acid (14) and trans-caffeic acid (15) exhibited inhibitory activities with IC50 values at 86.27 ± 3.45; 9.18 ± 1.90; 76.18 ± 2.42; 72.91 ± 4.97 and 95.16 ± 1.20 µg/mL, respectively.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Iridoids/pharmacology , Lipopolysaccharides/adverse effects , Macrophages/drug effects , Rubiaceae/chemistry , Animals , Anti-Inflammatory Agents/chemistry , Inhibitory Concentration 50 , Iridoids/chemistry , Macrophages/cytology , Macrophages/metabolism , Mice , Molecular Structure , Nitric Oxide/metabolism , Plant Extracts/chemistry , Plant Extracts/pharmacology , Plant Stems/chemistry , RAW 264.7 Cells
12.
Molecules ; 23(7)2018 07 04.
Article in English | MEDLINE | ID: mdl-29973552

ABSTRACT

Three new secoiridoid constituents, goncarin A−C (1⁻3), and a new derivative, goncarin A monoacetate (4), along with two known lignins, pinoresinol (5) and paulownin (6), were isolated from the seed of Gonocaryum calleryanum (Baill.) Becc. The structures of the new metabolites were determined on the basis of extensive spectroscopic analysis, particularly mass spectroscopy and 2D NMR (¹H⁻¹H COSY, HMQC, HMBC, and NOESY) spectroscopy. The aim of this study was to identify the anti-inflammatory effects of compounds 1⁻6 on lipopolysaccharide (LPS)-stimulated murine macrophage cell lines (RAW 264.7). Following stimulation with LPS, elevated levels of nitric oxide (NO) production were detected in RAW 264.7 cells; however, pretreatment with compounds 1⁻6 significantly inhibited the production of NO (around 40⁻80%, p < 0.01⁻0.05), by suppressing the expression of inducible NO synthase (iNOS). In addition, LPS-stimulated tumor necrosis factor-α (TNF-α) production was significantly reduced by compounds 1⁻3 (25⁻40%, p < 0.01⁻0.05). These results suggested that compounds 1⁻3 may exert anti-inflammatory activity, and that compounds 1⁻3 may be considered a potential therapeutic for the treatment of inflammatory diseases associated with macrophage activation.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Campanulaceae/chemistry , Iridoids/pharmacology , Lipopolysaccharides/adverse effects , Nitric Oxide/metabolism , Animals , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/isolation & purification , Gene Expression Regulation/drug effects , Iridoids/chemistry , Iridoids/isolation & purification , Mice , Molecular Structure , Nitric Oxide Synthase Type II/metabolism , Plant Extracts/isolation & purification , Plant Extracts/pharmacology , RAW 264.7 Cells , Seeds/chemistry , Tumor Necrosis Factor-alpha/metabolism
13.
Int J Mol Sci ; 18(11)2017 Nov 17.
Article in English | MEDLINE | ID: mdl-29149031

ABSTRACT

Research so far has only shown that edible red macroalgae, Sarcodia ceylanica has the ability to eliminate free radicals and anti-diabetic, anti-bacterial properties. This study was conducted both in vitro and in vivo on the ethyl acetate extract (PD1) of farmed red macroalgae in order to explore its anti-inflammatory properties. In order to study the in vitro anti-inflammatory effects of PD1, we used lipopolysaccharide (LPS) to induce inflammatory responses in murine macrophages. For evaluating the potential in vivo anti-inflammatory and antinociceptive effects of PD1, we used carrageenan-induced rat paw edema to produce inflammatory pain. The in vitro results indicated that PD1 inhibited the LPS-induced pro-inflammatory protein, inducible nitric oxide synthase (iNOS) in macrophages. Oral PD1 can reduce carrageenan-induced paw edema and inflammatory nociception. PD1 can significantly inhibit carrageenan-induced leukocyte infiltration, as well as the protein expression of inflammatory mediators (iNOS, interleukin-1ß, and myeloperoxidase) in inflammatory tissue. The above results indicated that PD1 has great potential to be turned into a functional food or used in the development of new anti-inflammatory and antinociceptive agents. The results from this study are expected to help scientists in the continued development of Sarcodia ceylanica for other biomedical applications.


Subject(s)
Analgesics/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Plant Extracts/pharmacology , Seaweed/chemistry , Acetates/chemistry , Animals , Biomarkers/metabolism , Carrageenan/adverse effects , Chemical Fractionation , Disease Models, Animal , Edema/pathology , Edema/therapy , Macrophages/drug effects , Mice , RAW 264.7 Cells , Rats , Rats, Wistar
14.
Molecules ; 22(7)2017 Jul 17.
Article in English | MEDLINE | ID: mdl-28714918

ABSTRACT

In this study, the cytotoxicities and anti-inflammatory activities of five resveratrol derivatives-vitisinol A, (+)-ε-viniferin, (+)-vitisin A, (-)-vitisin B, and (+)-hopeaphenol-isolated from Ampelopsis brevipedunculata var. hancei were evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and lipopolysaccharide (LPS)-stimulated RAW264.7 cells, respectively. The result from MTT assay analysis indicated that vitisinol A has lower cytotoxicity than the other four well-known oligostilbenes. In the presence of vitisinol A (5 µM), the significant reduction of inflammation product (nitric oxide, NO) in LPS-induced RAW264.7 cells was measured using Griess reaction assay. In addition, the under-expressed inflammation factors cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) in LPS-induced RAW264.7 cells monitored by Western blotting simultaneously suggested that vitisinol A has higher anti-inflammatory effect compared with other resveratrol derivatives. Finally, the anti-inflammatory effect of vitisinol A was further demonstrated on 12-O-tetradecanoylphorbol 13-acetate (TPA)-induced ear edema in mice. As a preliminary functional evaluation of natural product, the anti-inflammatory effect of vitisinol A is the first to be examined and reported by this study.


Subject(s)
Ampelopsis/chemistry , Anti-Inflammatory Agents/chemistry , Biflavonoids/chemistry , Catechin/chemistry , Plant Extracts/chemistry , Proanthocyanidins/chemistry , Stilbenes/chemistry , Animals , Anti-Inflammatory Agents/pharmacology , Biflavonoids/pharmacology , Biomarkers , Catechin/pharmacology , Cyclooxygenase 2/metabolism , Macrophages/drug effects , Macrophages/immunology , Macrophages/metabolism , Male , Mice , Molecular Structure , Nitric Oxide/metabolism , Plant Extracts/pharmacology , Proanthocyanidins/pharmacology , RAW 264.7 Cells , Stilbenes/pharmacology
15.
J Agric Food Chem ; 65(12): 2521-2529, 2017 Mar 29.
Article in English | MEDLINE | ID: mdl-28285527

ABSTRACT

In this study, hot-water extracts (HW) from roots of Vitis thunbergii var. taiwaniana (VTT-R) were shown to lower levels of lipid accumulation significantly (P < 0.01 or 0.001) compared to the control in 3T3-L1 adipocytes. The VTT-R-HW (40 mg/kg) interventions concurrent with a high-fat (HF) diet in C57BL/6 mice over a 5 eek period were shown to reduce body weights significantly (P < 0.05) compared to those of mice fed a HF diet under the same food-intake regimen. The (+)-ε-viniferin isolated from VTT-R-HW was shown to reduce the size of lipid deposits significantly compared to the control (P < 0.05 or 0.001) in 3T3-L1 adipocytes, and dose-dependent 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase inhibitions showed that the 50% inhibitory concentration was calculated to be 96 µM. The two-stage (+)-ε-viniferin interventions (10 mg/kg, day 1 to day 38; 25 mg/kg, day 39 to day 58) were shown to lower mice body weights significantly (P < 0.05 or 0.001), the weight ratio of mesenteric fat, blood glucose, total cholesterol, and low-density lipoprotein compared to that of the HF group under the same food-intake regimen but without concurrent VTT-R-HW interventions. It might be possible to use VTT-R-HW or (+)-ε-viniferin as an ingredient in the development of functional foods for weight management, and this will need to be investigated further.


Subject(s)
Benzofurans/administration & dosage , Obesity/drug therapy , Plant Extracts/administration & dosage , Plant Roots/chemistry , Stilbenes/administration & dosage , Vitis/chemistry , Animals , Benzofurans/chemistry , Benzofurans/isolation & purification , Blood Glucose/metabolism , Cholesterol/metabolism , Diet, High-Fat/adverse effects , Humans , Male , Mice , Mice, Inbred C57BL , Molecular Structure , Obesity/metabolism , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Stilbenes/chemistry , Stilbenes/isolation & purification
16.
J Agric Food Chem ; 63(42): 9286-94, 2015 Oct 28.
Article in English | MEDLINE | ID: mdl-26448517

ABSTRACT

The increasing prevalence of obesity continues to gain more attention worldwide. In this study, diet-induced obese mice were used to evaluate the antiobesity effects of extracts, fractions, and purified compounds from Vitis thunbergii var. taiwaniana (VTT). The C57BL/6J mice were fed a 5-week high-fat diet (HF) concurrently with ethanol extracts (Et-ext, 80 mg/kg) from roots (R), stems (S), and leaves (L) by oral gavage daily. Only R-Et-ext interventions showed significant weight reduction in mice compared with those in the HF group; however, mouse plasma contents of total cholesterols (TC), total triglycerides (TG) and low-density lipoproteins (LDL) of all three Et-ext intervened groups showed significant reductions compared with those in the HF group. Furthermore, intervention with the ethyl acetate-partitioned fraction (EA-fra, 60 mg/kg) from R-Et-ext but not the n-butanol-partitioned fraction or water fraction from R-Et-ext showed significant weight reduction in mice compared with those in the HF group. The same molecular weights of three resveratrol tetramers, (+)-hopeaphenol, (+)-vitisin A, and (-)-vitisin B, were isolated from the EA-fra of VTT-R. The (+)-vitisin A and fenofibrate (25 mg/kg) but not the (+)-hopeaphenol and (-)-vitisin B interventions showed significant weight reduction in mice compared with those in the HF group. The total feed intake among the HF groups with or without interventions showed no significant differences. The mouse plasma contents of TC, TG, LDL, free fatty acid, and plasma lipase activity of the three resveratrol tetramer-intervened groups showed reductions in the mice compared with those in the HF group. It was proposed that the lipase inhibitory activities of VTT extracts and purified resveratrol tetramers might contribute in part to the antiobesity effect, and these results suggested that VTT may be developed as functional food for achieving antiobesity objectives and requires further investigation.


Subject(s)
Obesity/drug therapy , Plant Extracts/administration & dosage , Vitis/chemistry , Animals , Cholesterol/metabolism , Diet, High-Fat/adverse effects , Lipoproteins, LDL/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Obese , Obesity/metabolism , Phytotherapy , Plant Leaves/chemistry , Plant Stems/chemistry , Resveratrol , Stilbenes/administration & dosage , Taiwan , Triglycerides/metabolism
17.
J Proteomics ; 128: 424-35, 2015 Oct 14.
Article in English | MEDLINE | ID: mdl-26344130

ABSTRACT

In this study, new angiotensin-I converting enzyme (ACE) inhibitory peptides were comprehensively identified from a thermolysin digest of bitter melon (Momordica charantia) seed proteins. The hydrolysate was fractionated by reversed-phase high performance liquid chromatography (RP-HPLC), and the inhibitory activities of the resulting fractions were evaluated using ACE inhibitory assay. Two novel ACE inhibitory peptides (VY-7 and VG-8) were identified using liquid chromatography-tandem mass spectrometry (LC-MS/MS) and database-assisted peptide sequencing. VY-7 and VG-8 were derived from momordin A and MAP30, respectively, and their IC50 values were as low as 8.64±0.60 and 13.30±0.62 µM, respectively. Lineweaver-Burk plots further indicated that VY-7, which showed the best IC50 value, acts as a competitive inhibitor. Notably, the content of VY-7 in crude thermolysin digest was determined to be as high as 14.89±0.88 µg/mg using LC-MS/MS quantification. In the spontaneously hypertensive rat (SHR) model, oral administration of VY-7 at 2mg/kg body weight significantly decreased the systolic blood pressure. The interaction between VY-7 and ACE was examined using molecular docking calculations and the results suggested that certain residues of VY-7 can fit perfectly into the S1, S1' and S2' regions of the binding pocket of ACE. BIOLOGICAL SIGNIFICANCE: One of the most common supportive therapies for treating hypertension is the use of synthetic drugs to inhibit ACE activity. Synthetic ACE inhibitors possess good antihypertensive effects, but come with accompanying side effects. Therefore, food-derived ACE inhibitory peptides are regarded as safer alternatives and are attracting much attention for hypertension treatment. In this study, we comprehensively identified peptides derived from bitter melon (Momordica charantia) seed proteins (BMSPs) using a shotgun proteomics approach. Based on results from an in vitro ACE inhibitory assay, two peptides (VY-7 and VG-8) derived from momordin A and MAP30 proteins, respectively, showed good ACE inhibitory activities. For VY-7, which showed the best IC50 value (8.64±0.60 µM), the inhibition type was determined to be competitive inhibition, as found using a Lineweaver-Burk plot. The novel ACE inhibitory peptide VY-7 (at 2mg/kg body weight) as well as the crude hydrolysate of BMSPs (at 10 mg/kg body weight) showed significant and moderate antihypertensive effects, respectively, in an animal model of hypertension, spontaneously hypertensive rats (SHRs). The present work demonstrated the screening of ACE inhibitory peptides from BMSPs and, as far as we know, VY-7 is the first well-characterized antihypertensive peptide derived from bitter melon seeds.


Subject(s)
Angiotensin-Converting Enzyme Inhibitors/chemical synthesis , Drug Discovery/methods , Momordica charantia/chemistry , Peptides/chemical synthesis , Plant Proteins/chemistry , Seeds/chemistry , Amino Acid Sequence , Drug Evaluation, Preclinical/methods , Molecular Sequence Data , Plant Extracts/chemistry , Protein Hydrolysates/chemistry , Sequence Analysis, Protein/methods
18.
J Agric Food Chem ; 63(28): 6393-401, 2015 Jul 22.
Article in English | MEDLINE | ID: mdl-26138774

ABSTRACT

Ethanol extracts (Et) from the stem (S) and leaf (L) of Vitis thunbergii var. taiwaniana (VTT) were used to investigate yeast α-glucosidase and porcine kidney dipeptidyl peptidase-IV (DPP-IV) inhibitory activities. Both VTT-Et showed complete α-glucosidase inhibition at 0.1 mg/mL; VTT-S-Et and VTT-L-Et showed 26 and 11% DPP-IV inhibition, respectively, at 0.5 mg/mL. The VTT-Et interventions (20 and 50 mg/kg) resulted in improvements in impaired glucose tolerance of diet-induced obese rats. (+)-Hopeaphenol, (+)-vitisin A, and (-)-vitisin B were isolated from the ethyl acetate fractions of S-Et and showed yeast α-glucosidase inhibition (IC50 = 18.30, 1.22, and 1.02 µM) and porcine kidney DPP-IV inhibition (IC50 = 401, 90.75, and 15.3 µM) compared to acarbose (6.39 mM) and sitagliptin (47.35 nM), respectively. Both (+)-vitisin A and (-)-vitisin B showed mixed noncompetitive inhibition against yeast α-glucosidase and porcine kidney DPP-IV, respectively. These results proposed that VTT extracts might through inhibitions against α-glucosidase and DPP-IV improve the impaired glucose tolerance in diet-induced obese rats.


Subject(s)
Dipeptidyl-Peptidase IV Inhibitors/pharmacology , Glycoside Hydrolase Inhibitors/pharmacology , Plant Extracts/pharmacology , alpha-Glucosidases/metabolism , Animals , Benzofurans/chemistry , Benzofurans/isolation & purification , Benzofurans/pharmacology , Dipeptidyl Peptidase 4/metabolism , Glucose Intolerance/drug therapy , Kinetics , Male , Obesity/complications , Phenols/chemistry , Phenols/isolation & purification , Phenols/pharmacology , Plant Extracts/chemistry , Plant Leaves/chemistry , Rats , Rats, Wistar , Saccharomyces cerevisiae/enzymology , Stilbenes/chemistry , Stilbenes/isolation & purification , Stilbenes/pharmacology , Swine , Vitis
19.
Nat Prod Commun ; 9(8): 1127-8, 2014 Aug.
Article in English | MEDLINE | ID: mdl-25233588

ABSTRACT

Phytochemical investigation of the methanol extract of the wood of Cunninghamia konishii resulted in the isolation of two new acidic labdane-type diterpenoids, 12(S)-hydroxy-15,16-epoxylabda-8(17),13-dien-19-oic acid (1) and 12(S)-hydroxy-15,16-epoxylabda-8(17),13-dien-18-oic acid (2), along with one known labdane-type diterpene, 7,13E-labdadien-15-ol (3). Their structures were determined by analysis of spectroscopic data and comparison with the data of known analogues.


Subject(s)
Cunninghamia/chemistry , Diterpenes/chemistry , Plant Extracts/chemistry , Wood/chemistry , Magnetic Resonance Spectroscopy , Molecular Structure
20.
J Agric Food Chem ; 62(22): 5085-91, 2014 Jun 04.
Article in English | MEDLINE | ID: mdl-24832927

ABSTRACT

Chin-shin oolong tea, a popular tea in Taiwan, was empirically perceived to induce hunger and accelerate gastric emptying in a manner similar to the physiological effects of ghrelin, an endogenous acylated peptide known as the hunger hormone. Two unique acylated flavonoid tetraglycosides previously identified in Chin-shin oolong tea were demonstrated to induce hunger of rats in a food intake assay and, thus, named teaghrelin-1 and teaghrelin-2. Similar to GHRP-6, a synthetic analogue of ghrelin, teaghrelin-1 stimulated growth hormone secretion of rat primary anterior pituitary cells in a dose-dependent manner, and the stimulation was inhibited by [D-Arg(1),D-Phe(5),D-Trp(7,9),Leu(11)]-substance P, an antagonist of the ghrelin receptor. While teaghrelin-2 remained unmodified, a meta-O-methylated metabolite of teaghrelin-1 was detected in bile of rats after intravenous injection. Presumably, teaghrelins are promising oral agonists of the ghrelin receptor.


Subject(s)
Camellia sinensis/chemistry , Flavonoids/pharmacology , Glycosides/pharmacology , Plant Extracts/pharmacology , Receptors, Ghrelin/agonists , Acylation , Animals , Eating/drug effects , Flavonoids/chemistry , Ghrelin/metabolism , Glycosides/chemistry , Male , Plant Extracts/chemistry , Rats , Rats, Sprague-Dawley , Receptors, Ghrelin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL