Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Crit Rev Food Sci Nutr ; : 1-20, 2023 Mar 30.
Article in English | MEDLINE | ID: mdl-36995226

ABSTRACT

Maize gluten meal (MGM) is a by-product of maize starch and ethanol, produced by the wet milling process. Its high protein content makes it a preferred ingredient in feed. Given the high prevalence of mycotoxins in maize globally, they pose a significant challenge to use of MGM for feed: wet milling could concentrate certain mycotoxins in gluten components, and mycotoxin consumption affects animal health and can contaminate animal-source foods. To help confront this issue, this paper summarizes mycotoxin occurrence in maize, distribution during MGM production and mycotoxin risk management strategies for MGM through a comprehensive literature review. Available data emphasize the importance of mycotoxin control in MGM and the necessity of a systematic control approach, which includes: good agriculture practices (GAP) in the context of climate change, degradation of mycotoxin during MGM processing with SO2 and lactic acid bacteria (LAB) and the prospect of removing or detoxifying mycotoxins using emerging technologies. In the absence of mycotoxin contamination, MGM represents a safe and economically critical component of global animal feed. With a holistic risk assessment-based, seed-to-MGM-feed systematic approach to reducing and decontaminating mycotoxins in maize, costs and negative health impacts associated with MGM use in feed can be effectively reduced.

2.
Int J Med Sci ; 18(11): 2417-2430, 2021.
Article in English | MEDLINE | ID: mdl-33967620

ABSTRACT

Glioblastoma (GBM) is the most common malignant primary brain tumor in humans, exhibiting highly infiltrative growth and drug resistance to conventional chemotherapy. Cedrus atlantica (CAt) extract has been shown to decrease postoperative pain and inhibit the growth of K562 leukemia cells. The aim of this study was to assess the anti-GBM activity and molecular mechanism of CAt extract in vitro and in vivo. The results showed that CAt extract greatly suppressed GBM cells both in vitro and in vivo and enhanced the survival rate in subcutaneous and orthotopic animal models. Moreover, CAt extract increased the level of ROS and induced DNA damage, resulting in cell cycle arrest at the G0/G1 phase and cell apoptosis. Western blotting results indicated that CAt extract regulates p53/p21 and CDK4/cyclin D1 protein expression and activates extrinsic and intrinsic apoptosis. Furthermore, CAt extract enhanced the cytotoxicity of Temozolomide and decreased AKT/mTOR signaling by combination treatment. In toxicity assays, CAt extract exhibited low cytotoxicity toward normal cells or organs in vitro and in vivo. CAt extract suppresses the growth of GBM by induction of genotoxicity and activation of apoptosis. The results of this study suggest that CAt extract can be developed as a therapeutic agent or adjuvant for GBM treatment in the future.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/pharmacology , Brain Neoplasms/drug therapy , Cedrus/chemistry , Glioblastoma/drug therapy , Plant Extracts/pharmacology , Animals , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Apoptosis/drug effects , Apoptosis/genetics , Brain Neoplasms/pathology , Cell Line, Tumor , DNA Damage/drug effects , Drug Synergism , Female , G1 Phase Cell Cycle Checkpoints/drug effects , Glioblastoma/pathology , Humans , Mice , Plant Extracts/therapeutic use , Rats , Temozolomide/pharmacology , Temozolomide/therapeutic use , Xenograft Model Antitumor Assays
3.
Molecules ; 27(1)2021 Dec 23.
Article in English | MEDLINE | ID: mdl-35011309

ABSTRACT

N-acetylcysteine (NAC) is a recognized antioxidant in culture studies and treatments for oxidative stress-related diseases, but in some cases, NAC is a pro-oxidant. To study the effect of NAC on cell proliferation in the presence or absence of ROS stress, we used the stable ROS generator gallic acid (GA) to treat CL1-0 lung cancer cell models with different antioxidant activities. Different antioxidant activities were achieved through the ectopic expression of different PERP-428 single nucleotide polymorphisms. GA increased ROS levels in CL1-0/PERP-428C cells and caused cell death but had no effect on CL1-0/PERP-428G cells within 24 h. We found that 0.1 mM NAC eliminated GA-induced growth inhibition, but 0.5 mM NAC enhanced GA-induced CL1-0/PERP-428C cell death. However, in the absence of GA, NAC exceeding 2 mM inhibited the growth of CL1-0/PERP-428G cells more significantly than that of CL1-0/PERP-428C cells. Without GA, NAC has an antioxidant effect. Under GA-induced ROS stress, NAC may have pro-oxidant effects. Each cell type has a unique range of ROS levels for survival. The levels of ROS in the cell determines the sensitivity of the cell to an antioxidant or pro-oxidant. Cells with different antioxidant capacities were used to show that the intracellular ROS level affects NAC function and provides valuable information for the adjuvant clinical application of NAC.


Subject(s)
Acetylcysteine/pharmacology , Antineoplastic Agents/pharmacology , Antioxidants/pharmacology , Gallic Acid/pharmacology , Acetylcysteine/chemistry , Antineoplastic Agents/chemistry , Antioxidants/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Dose-Response Relationship, Drug , Drug Synergism , Gallic Acid/chemistry , Humans , Lung Neoplasms , Molecular Structure , Oxidative Stress/drug effects , Reactive Oxygen Species/metabolism
4.
Front Pharmacol ; 9: 636, 2018.
Article in English | MEDLINE | ID: mdl-29962953

ABSTRACT

Lumbrokinase is used as an oral supplement to support and maintain healthy cardiovascular function, and to treat cardiovascular diseases in clinical for more than 10 years. Up until now, the mechanism of the cardioprotective effects of post-ischemic treatment with lumbrokinase has remained unclear. We therefore investigated the signaling pathways involved in the amelioration of myocardial ischemia-reperfusion (I-R) injury in rats treated with lumbrokinase 20 min after myocardial ischemia. Compared to vehicle-treated rats, post-ischemic treatment with lumbrokinase was associated with significant reductions in myocardial I-R-induced arrhythmias and myocardial damage, and an improvement in cardiac function. Moreover, lumbrokinase significantly upregulated levels of silent information regulator 1 (Sirt1). In addition, lumbrokinase significantly increased manganese-dependent superoxide dismutase expression, decreased Cleaved-Caspase-3 expression, and induced deacetylation of FoxO1. On the other hand, lumbrokinase also significantly downregulated levels of succinate dehydrogenase, cytochrome c oxidase, nuclear factor kappa B (NF-κB) and elevated levels of microtubule-associated protein light chain 3. Notably, the cardioprotective effects of lumbrokinase were abolished by administration of the specific Sirt1 inhibitor EX527. These findings demonstrate that post-ischemic treatment with lumbrokinase attenuates myocardial I-R injury through the activation of Sirt1 signaling, and thus enhances autophagic flux and reduces I-R-induced oxidative damage, inflammation and apoptosis.

5.
BMC Complement Altern Med ; 17(1): 210, 2017 Apr 11.
Article in English | MEDLINE | ID: mdl-28399860

ABSTRACT

BACKGROUND: JC-001 is a Chinese medicine that can modulate the immunity in Hepa 1-6 tumor-bearing mice, and we questioned whether JC-001 can serve as efficient adjuvant chemotherapy. We aimed to identify a novel approach for enhancing cis-diamminedichloroplatinum (II) (CDDP)-based chemotherapy by immunomodulation. METHODS: The anti-tumor activity in vitro was determined based on foci formation and a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. A LLC1 tumor xenograft model was used to analyze the activity of tumor rejection in vivo. The tumors were analyzed through hematoxylin and eosin (H&E) staining, immunohistochemistry (IHC) staining and cytokine arrays. RESULTS: JC-001 suppressed foci formation and reduced the viability of Lewis lung carcinoma (LLC1) cells in vitro. JC-001 suppressed LLC1 tumor growth in immunodeficient BALB/c nude mice and in immunocompetent C57BL/6 mice to an even greater extent. Furthermore, JC-001 up-regulated interferon-γ expression in the tumor microenvironment, enhanced the Th1 response in tumor-bearing mice, and increased the chemosensitivity of LLC1 tumors to CDDP chemotherapy. The results of our study suggest that JC-001 is associated with low cytotoxicity and can significantly suppress tumor growth by enhancing the Th1 response. CONCLUSION: JC-001 is a Chinese medicine with potential clinical applications in CDDP-based chemotherapeutic regimens.


Subject(s)
Antineoplastic Agents/administration & dosage , Carcinoma, Lewis Lung/drug therapy , Drugs, Chinese Herbal/administration & dosage , Lung Neoplasms/drug therapy , Animals , Apoptosis/drug effects , Carcinoma, Lewis Lung/genetics , Carcinoma, Lewis Lung/metabolism , Carcinoma, Lewis Lung/physiopathology , Cell Line, Tumor , Cisplatin/administration & dosage , Female , Humans , Interferon-gamma/genetics , Interferon-gamma/immunology , Lung Neoplasms/genetics , Lung Neoplasms/immunology , Lung Neoplasms/physiopathology , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Nude
6.
Integr Cancer Ther ; 16(4): 516-525, 2017 12.
Article in English | MEDLINE | ID: mdl-27698264

ABSTRACT

JC-001 is a Chinese medicine that has been used to treat liver disease; however, its significance in cancer treatment has not been characterized. In this study, we used an immunocompetent tumor model to characterize the antitumor activity of JC-001. A total of 48 Hepa 1-6 tumor-bearing C57BL/6 mice were randomly grouped into 4 groups and treated with H2O or JC-001 via oral administration. After hepatoma cell lines, including HepG2, Hep3B, SK-Hep-1, and Hepa 1-6, underwent 96 hours of JC-001 treatment, a low cytotoxic effect was observed. In contrast, no direct cytotoxic effect of JC-001 on a normal human liver cell line, THLE-3, was observed under the same incubation conditions. Using a murine tumor model, we found that tumor growth could be inhibited by JC-001 in C57BL/6 mice but not in immunodeficient mice. Histopathological analysis of tumors from C57BL/6 mice revealed immune cell infiltration in tumors from the JC-001-treated group, as observed by hematoxylin and eosin staining; in addition, Ki67, hypoxia-inducible factor-1-α, and high mobility group box 1 expression levels were suppressed in the tumors. Both the coculture assay and murine spleen mRNA quantitative PCR analyses demonstrated that JC-001 could suppress Th17 immunity. Our data suggest that JC-001 is a Chinese medicine with low cytotoxicity that can significantly suppress tumor growth by immune regulation. This herbal remedy has great potential for future clinical application in hepatoma therapy.


Subject(s)
Antineoplastic Agents/pharmacology , Carcinoma, Hepatocellular/drug therapy , Drugs, Chinese Herbal/pharmacology , Liver Neoplasms/drug therapy , Animals , Carcinoma, Hepatocellular/metabolism , Cell Line , Cell Line, Tumor , Cell Proliferation/drug effects , Disease Models, Animal , Female , HMGB Proteins/metabolism , Hep G2 Cells , Humans , Immunomodulation/drug effects , Liver Neoplasms/metabolism , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Nude , RNA, Messenger/metabolism
7.
Article in English | MEDLINE | ID: mdl-21760828

ABSTRACT

Terpinen-4-ol, a monoterpene component of the essential oils of several aromatic plants, exhibits antitumor effects. In this study, the antitumor effects of terpinen-4-ol and the cellular and molecular mechanisms responsible for it were evaluated and studied, respectively on human nonsmall cell lung cancer (NSCLC) cells. Our results indicated that terpinen-4-ol elicited a dose-dependent cytotoxic effect, as determined by MTT assay. Increased sub-G1 population and annexin-V binding, activation of caspases 9 and 3, cleavage of poly(ADPribose) polymerase (PARP), and a decrease of mitochondrial membrane potential (MMP) indicated involvement of the mitochondrial apoptotic pathway in terpinen-4-ol-treated A549 and CL1-0 cells. Elevation of the Bax/Bcl-2 ratio and a decrease in IAP family proteins XIAP and survivin were also observed following terpinen-4-ol treatment. Notably, terpinen-4-ol was able to increase p53 levels in A549 and CL1-0 cells. Diminution of p53 by RNA interference induced necrosis instead of apoptosis in A549 cells following terpinen-4-ol treatment, indicating that terpinen-4-ol-elicited apoptosis is p53-dependent. Moreover, intratumoral administration of terpinen-4-ol significantly suppressed the growth of s.c. A549 xenografts by inducing apoptosis, as confirmed by TUNEL assay. Collectively, these data provide insight into the molecular mechanisms underlying terpinen-4-ol-induced apoptosis in NSCLC cells, rendering this compound a potential anticancer drug for NSCLC.

SELECTION OF CITATIONS
SEARCH DETAIL