Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
1.
Eur J Pharm Sci ; 196: 106762, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38614153

ABSTRACT

Propolis has a long ethnopharmacological history for oral periodontal diseases treatment. Propolis flavonoids are main active components for anti-inflammation and tissue protection. However, the intractable dissolution properties of propolis flavonoids and complex oral environment pose great challenges for periodontal delivery. In addition, the therapeutic mechanism as well as the therapeutic correlation of inflammation resolution and tissue regeneration remain unclear for propolis flavonoids. In this study, we constructed an in situ thermosensitive depot systems using total flavonoids from propolis-loaded cubic liquid crystals (TFP-CLC) hydrogel for periodontal delivery. TFP-CLC inhibited inflammatory cell infiltration, reactive oxygen species and the expression of inflammatory cytokines of NF-κB and IL-1ß. In addition, alveolar bone and collagen were significantly regenerated after TFP-CLC administration according to micro-CT and immunohistochemistry. Mechanism studies suggested that TFP-CLC alleviated inflammation and promoted alveolar bone repair via regulating TLR4/MyD88/NF-κB p65 and RANK/NF-κB signaling pathways, respectively. Correlation analysis further confirmed that the inflammatory resolution produced by TFP-CLC could accelerate periodontal tissue regeneration. In summary, TFP-CLC is a promising multifunctional in situ thermo-sensitive hydrogel depots for periodontitis treatment.

2.
J Med Food ; 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38498802

ABSTRACT

Obesity is a threat to public health and effective new medications are required. Platycodonis Radix (PR) is a traditional medicinal/dietary plant with activities against obesity. Using mice given a diet rich in fat, the antiobesity components of PR were identified and their molecular mechanisms were clarified further in this investigation. Initially, the impacts of PR fractions on liver histology and biochemical markers were assessed. Subsequently, the degrees of lipogenic and lipolytic gene and protein expressions were determined. Oral administration of PR polysaccharides (PG) (0.80 g/kg body weight) improved liver function (alanine aminotransferase and aspartate aminotransferase) and its antioxidant activities (total superoxide dismutase, glutathione peroxidase, and malondialdehyde), as well as alleviated blood lipid (total cholesterol, total triglyceride, high-density lipoprotein cholesterol, and low-density lipoprotein cholesterol) values, inflammatory systemic (TNF-α and IL-1ß), and histological abnormalities within the liver. Furthermore, PG administration downregulated the expression for lipogenic genes (ACC and FAS) and upregulated the expression for the lipolytic gene (PPARα, LPL, CPT1, and HSL). Importantly, PG raised AMPK phosphorylation and decreased SREBP-1c protein synthesis. Thus, it is possible that PG stimulates the AMPK-LPL/HSL path (lipolytic route) plus the AMPK-ACC/PPARα-CPT1 path (associated to ß-oxidation of fatty acids), while inhibiting the AMPK/(SREBP-1c)-ACC/FAS path (lipogenic route). In summary, PG has the ability to regulate lipid metabolism, and it may be useful to pharmacologically activate AMPK with PG to prevent and cure obesity.

3.
J Ethnopharmacol ; 319(Pt 3): 117324, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-37852336

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: In traditional Chinese medicine, propolis has been used for treating oral diseases for centuries, widely. Flavonoid extract is the main active ingredient in propolis, which has attracted extensive attention in recent years. AIM OF THE STUDY: The objective and novelty of the current study aims to identify the mechanism of total flavonoid extract of propolis (TFP) for the treatment of periodontitis, and evaluate the therapeutic effect of TFP-loaded liquid crystal hydrogel (TFP-LLC) in rats with periodontitis. METHODS: In this study, we used lipopolysaccharide-stimulated periodontal ligament stem cells (PDLSCs) to construct in vitro inflammation model, and investigated the anti-inflammatory effect of TFP by expression levels of inflammatory factors. Osteogenic differentiation was assessed using alkaline phosphatase activity and alizarin red staining. Meanwhile, the expression of toll like receptor 4 (TLR4), myeloid differentiation primary response 88 (MyD88), nuclear factor-kappa B (NF-κB), receptor activator of NF-κB (RANK) etc, were quantitated to investigate the therapeutic mechanism of TFP. Finally, we constructed TFP-LLC using a self-emulsification method and administered it to rats with periodontitis via periodontal pocket injection to evaluate the therapeutic effects. The therapeutic index, microcomputed tomography (Micro-CT), H&E staining, TRAP staining, and Masson staining were used for this evaluation. RESULTS: TFP reduced the expression of TLR4, MyD88, NF-κB and inflammatory factor in lipopolysaccharide-stimulated PDLSCs. Meanwhile, TFP simultaneously regulating alkaline phosphatase, RANK, runt-associated transcription factor-2 and matrix metalloproteinase production to accelerate osteogenic differentiation and collagen secretion. In addition, TFP-LLC can stably anchor to the periodontal lesion site and sustainably release TFP. After four weeks of treatment with TFP-LLC, we observed a decrease in the levels of NF-κB and interleukin-1ß (IL-1ß) in the periodontal tissues of rats, as well as a significant reduction in inflammation in HE staining. Similarly, Micro CT results showed that TFP-LLC could significantly inhibit alveolar bone resorption, increase bone mineral density (BMD) and reduce trabecular bone space (Tb.Sp) in rats with periodontitis. CONCLUSION: Collectively, we have firstly verified the therapeutic effects and mechanisms of TFP in PDLSCs for periodontitis treatment. Our results indicate that TFP perform anti-inflammatory and tissue repair activities through TLR4/MyD88/NF-κB and RANK/NF-κB pathways in PDLSCs. Meanwhile, for the first time, we employed LLC delivery system to load TFP for periodontitis treatment. The results showed that TFP-LLC could be effectively retained in the periodontal pocket and exerted a crucial role in inflammation resolution and periodontal tissue regeneration.


Subject(s)
Alveolar Bone Loss , Periodontitis , Propolis , Animals , Rats , Periodontal Ligament , Toll-Like Receptor 4 , Myeloid Differentiation Factor 88 , NF-kappa B , Propolis/pharmacology , Propolis/therapeutic use , Periodontal Pocket , Alkaline Phosphatase , Lipopolysaccharides , Osteogenesis , X-Ray Microtomography , Periodontitis/drug therapy , Periodontium , Inflammation/drug therapy , Adaptor Proteins, Signal Transducing , Alveolar Bone Loss/drug therapy , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Plant Extracts
4.
Planta ; 258(6): 115, 2023 Nov 09.
Article in English | MEDLINE | ID: mdl-37943378

ABSTRACT

MAIN CONCLUSION: Two trans-isopentenyl diphosphate synthase and one squalene synthase genes were identified and proved to be involved in the triterpenoid biosynthesis in Platycodon grandiflorus. Platycodon grandiflorus is a commonly used traditional Chinese medicine. The main bioactive compounds of P. grandiflorus are triterpenoid saponins. The biosynthetic pathway of triterpenoid saponins in P. grandiflorus has been preliminarily explored. However, limited functional information on related genes has been reported. A total of three trans-isopentenyl diphosphate synthases (trans-IDSs) genes (PgFPPS, PgGGPPS1 and PgGGPPS2) and one squalene synthase (SQS) gene (PgSQS) in P. grandiflorus were screened and identified from transcriptome dataset. Subcellular localization of the proteins was defined based on the analysis of GFP-tagged. The activity of genes was verified in Escherichia coli, demonstrating that recombinant PgFPPS catalysed the production of farnesyl diphosphate. PgGGPPS1 produced geranylgeranyl diphosphate, whereas PgGGPPS2 did not exhibit catalytic activity. By structural identification of encoding genes, a transmembrane region was found at the C-terminus of the PgSQS gene, which produced an insoluble protein when expressed in E. coli but showed no apparent effect on the enzyme function. Furthermore, some triterpenoid saponin synthesis-related genes were discovered by combining the component content and the gene expression assays at the five growth stages of P. grandiflorus seedlings. The accumulation of active components in P. grandiflorus was closely associated with the expression level of genes related to the synthesis pathway.


Subject(s)
Platycodon , Saponins , Farnesyl-Diphosphate Farnesyltransferase/genetics , Platycodon/genetics , Escherichia coli/genetics , Saponins/genetics
5.
Front Nutr ; 10: 1341583, 2023.
Article in English | MEDLINE | ID: mdl-38299183

ABSTRACT

Traditional Chinese medicine (TCM) has displayed preventive and therapeutic effects on many complex diseases. As natural biological macromolecules, TCM-derived antiobesogenic polysaccharides (TCMPOs) exhibit notable weight-loss effects and are seen to be a viable tactic in the fight against obesity. Current studies demonstrate that the antiobesity activity of TCMPOs is closely related to their structural characteristics, which could be affected by the extraction and purification methods. Therefore, the extraction, purification and structural-property correlations of TCMPOs were discussed. Investigation of the antiobesity mechanism of TCMPOs is also essential for their improved application. Herein, the possible antiobesity mechanisms of TCMPOs are systematically summarized: (1) modulation of appetite and satiety effects, (2) suppression of fat absorption and synthesis, (3) alteration of the gut microbiota and their metabolites, and (4) protection of intestinal barriers. This collated information could provide some insights and offer a new therapeutic approach for the management and prevention of obesity.

6.
Protein Pept Lett ; 29(12): 1061-1071, 2022.
Article in English | MEDLINE | ID: mdl-36045540

ABSTRACT

Platycodon grandiflorus is a well-known and widely distributed traditional herbal medicine and functional food in Asia, with triterpenoids as the main bioactive component in its roots. Acetyl-CoA C-acetyltransferase (AACT) is the initiation enzyme in the mevalonate pathway and plays an important role in the biosynthesis of terpenoids. OBJECTIVE: The objective of this study was to clone and identify the PgAACT function in P. grandiflorus. METHODS: The full-length sequence of PgAACT genes was isolated and cloned from P. grandiflorus by polymerase chain reaction (PCR). The recombinant plasmid was constructed using the pET-32a vector and expressed in E. coli Transetta (DE3) cells. Subcellular localization of AACT was observed in the epidermal cells of N. tabacum. Quantitative reverse transcription-PCR (qRT-PCR) was used to identify the PgAACT gene transcription levels. After MeJA treatment, the changes in AACT gene expression were observed, and UHPLC-Q-Exactive Orbitrap MS/MS was used to detect the changes in P. grandiflorus saponins. RESULTS: In this study, two full-length cDNAs encoding AACT1 (PgAACT1) and AACT2 (PgAACT2) were isolated and cloned from P. grandiflorus. The deduced PgAACT1 and PgAACT2 proteins contain 408 and 416 amino acids, respectively. The recombinant vectors were constructed, and the protein expression was improved by optimizing the reaction conditions. Sodium dodecyl sulphate-polycrylamide gel electrophloresis and western blot analysis showed that the PgAACT genes were successfully expressed, with molecular weights of the recombinant proteins of 61 and 63 kDa, respectively. Subcellular localization showed that the PgAACT genes were localized in the cytoplasm. Tissue specificity analysis of P. grandiflorus from different habitats showed that PgAACT genes were expressed in the roots, stems, and leaves. After MeJA treatment, the expression level of PgAACT genes and the content of total saponins of P. grandiflorus were significantly increased, suggesting that PgAACT genes play an important role in regulating plant defense systems. CONCLUSION: Cloning, expression, and functional analysis of PgAACT1 and PgAACT2 will be helpful in understanding the role of these two genes in terpene biosynthesis.


Subject(s)
Platycodon , Saponins , Platycodon/genetics , Platycodon/metabolism , Acetyl-CoA C-Acetyltransferase/genetics , Acetyl-CoA C-Acetyltransferase/metabolism , DNA, Complementary/genetics , Gene Expression Regulation, Plant , Escherichia coli/genetics , Tandem Mass Spectrometry , Cloning, Molecular , Terpenes
7.
J Anal Methods Chem ; 2022: 7611501, 2022.
Article in English | MEDLINE | ID: mdl-36161105

ABSTRACT

Pyrrolizidine alkaloids (PAs) constitute a class of phytotoxin which demonstrates strong hepatotoxicity. In China, many plants containing PAs are used as traditional medicines or medicinal preparations, which could harm human health and safety. Xiaoyao Tablet (XYT) is an antidepressant drug registered in the European Union (EU), Compound Danshen Dropping Pills (CDDP) is a commonly used drug for coronary heart disease, and phase III clinical study is ongoing in the United States. The purpose of this study is to provide data to support the use of Chinese medicine preparations internationally and to establish analytical methods for 32 PAs in XYT and CDDP. The extraction parameters that were optimized include solid-phase extraction (SPE) cartridge, extraction method, and extraction solvent. Then ultra-performance liquid chromatography coupled with triple-quadrupole linear ion-traptandem mass spectrometry (UPLC-MS/MS) was developed to effectively and efficiently quantify the 32 PAs of the XYT and CDDP. The analytical methods for XYT and CDDP were verified respectively. For XYT, the analytical method for 32 PAs was linear, and the correlation coefficient r was greater than 0.994; the recovery (REC%) at 10-2000 µg/kg was 73.3%-118.5%, and the relative standard deviation (RSD%) was 2.1%-15.4%. The CDDP REC% was 71.8%-112.0%, and the RSD% was 2.0%-17.1%. This study provides technical and data support for the registration of Chinese patented medicines in the EU, controls quality and ensures safety, and is committed to the internationalization and standardization of Chinese patented medicines.

8.
Plant Signal Behav ; 17(1): 2089473, 2022 12 31.
Article in English | MEDLINE | ID: mdl-35730590

ABSTRACT

Platycodon grandiflorus, a perennial flowering plant widely distributed in China and South Korea, is an excellent resource for both food and medicine. The main active compounds of P. grandiflorus are triterpenoid saponins. WRKY transcription factors (TFs) are among the largest gene families in plants and play an important role in regulating plant terpenoid accumulation, physiological metabolism, and stress response. Numerous studies have been reported on other medicinal plants; however, little is known about WRKY genes in P. grandiflorus. In this study, 27 PgWRKYs were identified in the P. grandiflorus transcriptome. Phylogenetic analysis showed that PgWRKY genes were clustered into three main groups and five subgroups. Transcriptome analysis showed that the PgWRKY gene expression patterns in different tissues differed between those in Tongcheng City (Southern Anhui) and Taihe County (Northern Anhui). Gene expression analysis based on RNA sequencing and qRT-PCR analysis showed that most PgWRKY genes were expressed after induction with methyl jasmonate (MeJA). Co-expressing PgWRKY genes with triterpenoid biosynthesis pathway genes revealed four PgWRKY genes that may have functions in triterpenoid biosynthesis. Additionally, functional annotation and protein-protein interaction analysis of PgWRKY proteins were performed to predict their roles in potential regulatory networks. Thus, we systematically analyzed the structure, evolution, and expression patterns of PgWRKY genes to provide an important theoretical basis for further exploring the molecular basis and regulatory mechanism of WRKY TFs in triterpenoid biosynthesis.


Subject(s)
Platycodon , Triterpenes , Acetates , Cyclopentanes , Gene Expression Regulation, Plant/genetics , Oxylipins , Phylogeny , Plant Proteins/genetics , Plant Proteins/metabolism , Platycodon/genetics , Platycodon/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Transcriptome/genetics
9.
Cell Biol Toxicol ; 38(4): 679-697, 2022 08.
Article in English | MEDLINE | ID: mdl-35072892

ABSTRACT

Colorectal cancer (CRC) is regarded as one of the commonest cancer types around the world. Due to the poor understanding on the causes of CRC formation and progression, this study sets out to investigate the physiological mechanisms by which Astragalus mongholicus Bunge-Curcuma aromatica Salisb. (ARCR) regulates CRC growth and metastasis, and the role in which M2 macrophage polarization plays in this process. An orthotopic-transplant model of CRC was established to evaluate the influence of ARCR on the polarization of M2 macrophage and the growth and metastasis of tumors. Next, the binding affinity among Sp1, ZFAS1, miR-153-5p, and CCR5 was identified using multiple assays. Finally, after co-culture of bone marrow-derived macrophages (BMDM) with CRC cell line CT26.WT, the cell proliferative, invasive, and migrated abilities were assessed in gain- or loss-of-function experiments. ARCR inhibited the infiltration of M2 macrophages into tumor microenvironment to suppress the CRC growth and metastasis in vivo. Additionally, ARCR inhibited the transcription of ZFAS1 by reducing Sp1 expression to repress M2 macrophage polarization. Moreover, ZFAS1 competitively binds to miR-153-3p to upregulate the CCR5 expression. Finally, ARCR suppressed the polarization of M2 macrophages to inhibit the tumor growth and tumor metastasis in CRC by mediating the Sp1/ZFAS1/miR-153-3p/CCR5 regulatory axis. Collectively, ARCR appears to suppress the CRC cell growth and metastasis by suppressing M2 macrophage polarization via Sp1/ZFAS1/miR-153-3p/CCR5 regulatory axis. 1. ARCR suppress the CRC cell growth and metastasis 2. ZFAS1 promotes CCR5 expression by competitively binding to miR-153-3p. 3. Sp1 promotes M2 macrophage polarization by activating ZFAS1 via miR-153-3p/CCR5. 4. The study unveiled a protective target against CRC.


Subject(s)
Colorectal Neoplasms , Macrophage Activation , Plant Preparations , Astragalus propinquus/chemistry , Cell Line, Tumor , Cell Movement , Cell Proliferation , Colorectal Neoplasms/pathology , Curcuma/chemistry , Humans , Macrophages/metabolism , Macrophages/pathology , MicroRNAs/genetics , Neoplasm Invasiveness , Plant Preparations/pharmacology , RNA, Long Noncoding/genetics , Receptors, CCR5/metabolism , Sp1 Transcription Factor/metabolism , Tumor Microenvironment
10.
J Ethnopharmacol ; 285: 114872, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-34838618

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Herbal formulas have unique efficacy and are of great significance to the theory and practice of Chinese medicine and are therefore gaining increasing attention in research. Painong powder (PNS), composed of Aurantii fructus immaturus (Zhishi in Chinese, ZS), Paeoniae Radix Alba (Baishao in Chinese, BS), and Platycodonis Radix (Jiegeng in Chinese, JG), has remarkable effects on the detoxification and discharge of pus. JG is traditionally used to treat pulmonary carbuncles and is considered a 'medicinal guide'. According to the composition theory of prescriptions, JG is an 'assistant and guide' medicine. The role of JG as an adjuvant has gained increasing attention. AIM OF THE STUDY: The study was designed to prove the efficacy of PNS in ulcerative colitis (UC) and to study the role of JG in PNS via pharmacodynamic, pharmacokinetic, and tissue distribution analyses. MATERIALS AND METHODS: For the pharmacodynamic study, the UC rat model was induced using 5% trinitrobenzene sulfonic acid (TNBS). The results of the macroscopic characterization, histological analysis, and cytokine levels, including those of tumour necrosis factor-α (TNF-α), interleukin-1ß (IL-1ß), interleukin-6 (IL-6), and nuclear factor-kappa B (NF-κB), were integrated to evaluate the treatment of UC with PNS. In addition, an LC-MS/MS method was established and validated to analyze the blood pharmacokinetic parameters and tissue distribution of naringin and paeoniflorin. RESULTS: After the administration of high-dose PNS, the UC rats showed amelioration of macroscopic damage at the lesion site. The cytokine levels in the plasma, colon, and lung tissues were also decreased. The pharmacokinetic parameters showed that compared with UC rats administered with PNS-JG, those administered with PNS showed an increase in the AUC, MRT, and Tmax of naringin and paeoniflorin, and a decrease in their clearance rate. Furthermore, naringin and paeoniflorin had higher concentrations in the colon and lung tissues in the normal and model groups administered with PNS than in those administered with PNS-JG. CONCLUSIONS: PNS was shown to have marked therapeutic efficacy against TNBS-induced UC in rats. The effect of JG in PNS was reflected by the differences in the pharmacokinetic parameters and tissue distribution of the active components, providing valuable information for the clinical application of PNS in the treatment of UC. However, knowledge about how JG works as an adjuvant medicine in PNS is still lacking.


Subject(s)
Campanulaceae , Colitis, Ulcerative , Drugs, Chinese Herbal , Phytotherapy , Animals , Rats , Area Under Curve , Campanulaceae/chemistry , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/drug therapy , Cytokines/genetics , Cytokines/metabolism , Drugs, Chinese Herbal/pharmacokinetics , Drugs, Chinese Herbal/pharmacology , Gene Expression Regulation/drug effects , Half-Life , Inflammation/drug therapy , Inflammation/metabolism , Powders , Rats, Sprague-Dawley , Tissue Distribution , Trinitrobenzenesulfonic Acid/toxicity
11.
J Pharm Biomed Anal ; 209: 114529, 2022 Feb 05.
Article in English | MEDLINE | ID: mdl-34915325

ABSTRACT

The intestinal barrier dysfunction and the gut microbiota dysbiosis with excessive progress of inflammation contribute to the occurrence and acceleration of ulcerative colitis (UC). Painong Powder, a traditional Chinese medicine prescription, consists of Aurantii Fructus Immaturus, Paeoniae Radix Alba and Platycodonis Radix, which has been found to defend against colitis, but it is unclear whether its role in preventing UC is related to gut microbiota. This study aims to evaluate the effects of Painong-San extract (PNS) on UC and reveals the mechanisms related to gut microbiota. Firstly, a total of 125 chemical compounds, including 42 flavonoids, 29 triterpenoids, 21 monoterpenoids, 11 polyphenols, 6 limonoids, 5 alkaloids, 4 coumarins and 7 other compounds, were identified from PNS using ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry. Then, the results in vivo studies demonstrated that PNS treatment reduced the weight loss and the disease activity index, prevented colon shortening and alleviated colonic tissue damage in dextran sulfate sodium (DSS)-induced colitis mice. The intestinal barrier damage was repaired after PNS administration through promoting the expression of tight junction proteins (claudin-1, occludin and zonula occludens-1). More interestingly, PNS regulated gut microbiota dysbiosis, suppressed the overgrowth of conditional pathogenic gut bacteria, such as Oscillospiraceae and Helicobacter, while the probiotic gut microbiota like Romboutsia, Lactobacillus, Bifidobacterium and Akkermansia were increased. Furthermore, PNS remarkably ameliorated colonic inflammatory response through inhibiting intestinal TLR4/NF-κB signaling pathway by down-regulating the protein expressions of TLR4, MyD88, p-NF-κB p65 and p-IκBα. Taken together, PNS effectively improved DSS-induced colitis through the modulation of gut microbiota, restoration of intestinal barrier function and attenuation of TLR4/NF-κB signaling cascades, which may provide a new explanation of the mechanisms of PNS against UC.


Subject(s)
Colitis, Ulcerative , Colitis , Gastrointestinal Microbiome , Animals , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/drug therapy , Colon/metabolism , Dextran Sulfate/toxicity , Disease Models, Animal , Mice , Mice, Inbred C57BL , NF-kappa B/genetics , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Signal Transduction , Toll-Like Receptor 4/genetics
12.
Pharm Dev Technol ; 26(10): 1051-1060, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34511044

ABSTRACT

Pueraria flavone (PF), the main component of Pueraria lobata, is a traditional Chinese medicine used for the treatment of cardiovascular and cerebrovascular diseases; however, it exhibits low oral bioavailability because of its poor membrane permeability. In this study, PF-loaded sodium deoxycholate-decorated liposomes (SDC-Lips) were prepared using the reverse-phase evaporation method and optimised using the Box-Behnken design method. The morphology, particle size, zeta potential, and entrapment efficiency of these PF-loaded SDC-Lips were evaluated. The release behaviours of PF-loaded SDC-Lips in simulated gastric and intestinal fluids were consistent with the Weibull kinetic model. In situ intestinal perfusion studies showed that the absorption characteristics of free PF in rats were mainly passive diffusion and partly active transport, and the duodenum was the main absorption site. After encapsulated with SDC-Lips, the absorption of PF increased significantly. The in vivo pharmacokinetic parameters of area under the plasma concentration-time curve (AUC)(0 → 12 h) and AUC(0 → ∞) of PF-loaded SDC-Lips after intragastric administration were 1.34-fold and 1.543-fold, respectively. Overall, the PF-loaded SDC-Lips improved the oral absorption of PF by increasing its solubility and might be considered a promising formulation strategy for prolonging the biological activity time of PF.


Subject(s)
Flavones , Pueraria , Administration, Oral , Animals , Bile Acids and Salts , Drug Delivery Systems , Intestinal Absorption , Liposomes , Rats , Rats, Wistar
13.
Planta ; 254(2): 34, 2021 Jul 21.
Article in English | MEDLINE | ID: mdl-34291354

ABSTRACT

MAIN CONCLUSION: Comprehensive transcriptome analysis of different Platycodon grandiflorus tissues discovered genes related to triterpenoid saponin biosynthesis. Platycodon grandiflorus (Jacq.) A. DC. (P. grandiflorus), a traditional Chinese medicine, contains considerable triterpenoid saponins with broad pharmacological activities. Triterpenoid saponins are the major components of P. grandiflorus. Here, single-molecule real-time and next-generation sequencing technologies were combined to comprehensively analyse the transcriptome and identify genes involved in triterpenoid saponin biosynthesis in P. grandiflorus. We quantified four saponins in P. grandiflorus and found that their total content was highest in the roots and lowest in the stems and leaves. A total of 173,354 non-redundant transcripts were generated from the PacBio platform, and three full-length transcripts of ß-amyrin synthase, the key synthase of ß-amyrin, were identified. A total of 132,610 clean reads obtained from the DNBSEQ platform were utilised to explore key genes related to the triterpenoid saponin biosynthetic pathway in P. grandiflorus, and 96 differentially expressed genes were selected as candidates. The expression levels of these genes were verified by quantitative real-time PCR. Our reliable transcriptome data provide valuable information on the related biosynthesis pathway and may provide insights into the molecular mechanisms of triterpenoid saponin biosynthesis in P. grandiflorus.


Subject(s)
Platycodon , Saponins , Triterpenes , Gene Expression Profiling , Platycodon/genetics , Transcriptome
14.
Mini Rev Med Chem ; 21(12): 1406-1420, 2021.
Article in English | MEDLINE | ID: mdl-33573540

ABSTRACT

Propolis is a natural product made from the mixture of plant resin, saliva and wax collected by bees. It has been studied and concerned because of its high medicinal value and broad application prospects. Propolis has complex components, which can act on the body through multi-pathways and multi-targets to play the role of antibacterial, anti-inflammatory, anti-tumor and so on, and it can be used as an important resource for the prevention and treatment of oral diseases. In this review, we mainly reviewed components of propolis and its physiological activities against oral diseases, as well as the new dosage forms and applications of propolis in oral treatment. The purpose of this review is to explore the advantages of propolis in the treatment of oral diseases and the wide application of propolis in the field of oral health.


Subject(s)
Molecular Targeted Therapy , Oral Health , Propolis/pharmacology , Animals , Humans , Propolis/therapeutic use
15.
J Anal Methods Chem ; 2021: 8875876, 2021.
Article in English | MEDLINE | ID: mdl-33505766

ABSTRACT

Angelicae Sinensis Radix is a widely used traditional Chinese medicine and spice in China. The purpose of this study was to develop a methodology for geographical classification of Angelicae Sinensis Radix and determine the contents of ferulic acid and Z-ligustilide in the samples using near-infrared spectroscopy. A qualitative model was established to identify the geographical origin of Angelicae Sinensis Radix using Fourier transform near-infrared (FT-NIR) spectroscopy. Support vector machine (SVM) algorithms were used for the establishment of a qualitative model. The optimum SVM model had a recognition rate of 100% for the calibration set and 83.72% for the prediction set. In addition, a quantitative model was established to predict the content of ferulic acid and Z-ligustilide using FT-NIR. Partial least squares regression (PLSR) algorithms were used for the establishment of a quantitative model. Synergy interval-PLS (Si-PLS) was used to screen the characteristic spectral interval to obtain the best PLSR model. The coefficient of determination for calibration (R2C) for the best PLSR models established with the optimal spectral preprocessing method and selected important spectral regions for the quantitative determination of ferulic acid and Z-ligustilide was 0.9659 and 0.9611, respectively, while the coefficient of determination for prediction (R2P) was 0.9118 and 0.9206, respectively. The values of the ratio of prediction to deviation (RPD) of the two final optimized PLSR models were greater than 2. The results suggested that NIR spectroscopy combined with SVM and PLSR algorithms could be exploited in the discrimination of Angelicae Sinensis Radix from different geographical locations for quality assurance and monitoring. This study might serve as a reference for quality evaluation of agricultural, pharmaceutical, and food products.

16.
J Pharm Biomed Anal ; 193: 113708, 2021 Jan 30.
Article in English | MEDLINE | ID: mdl-33129117

ABSTRACT

Metabolomics, an important part of systems biology, can reveal the complex pathogenesis of many diseases and mechanism of Chinese materia medica (CMM). Astragalus membranaceus-Curcuma wenyujin (AC) was a classic drug pair that has a good clinical effect on gastrointestinal inflammation and many tumors. Our previous research proved that AC can inhibit tumor growth and metastasis especially the colorectal cancer (CRC), also promote the normalization of tumor blood vessels, but its optimal ratio and the specific mechanism is still not clear. In this study, colon cancer mice of orthotopic transplantion model was used to screen the best proportion, UPLC-Q-TOF/MS metabolomics analysis method was established to explore the pathogenesis of colon cancer and the molecular mechanism of AC. The correlation analysis of metabolite changes and tumor growth was analyzed by R language. The result showed that AC at the ratio of 2:1 showed the best effect on inhibiting tumor growth, also the liver and spleen metastasis rate. A total of 23 potential biomarkers were detected in the serum of colon cancer mice by the analysis of Progenesis QI (Version 2.4) software. Among this, 11 metabolites including purines, steroids, phytosphingosine and l-palmitoylcarnitine were up-regulated in CC mice, while 12 metabolites like amino acids, deoxyribose and dihydrobiopterin were down-regulated in CC mice. After the treatment of AC for 15 days, 8 biomarkers were up-regulated, and 9 biomarkers down-regulated. Especially, AC at the ratio of 2:1 showed a significant callback effect on metabolic biomarkers, such as hypoxanthine, xanthosine, 7-methylxanthine, all-trans-retinoic acid, dihomo-γ-linolenic acid. 8 metabolic pathways: Aminoacyl-tRNA biosynthesis, Nicotinate and nicotinamide metabolism, Phenylalanine, tyrosine and tryptophan biosynthesis, Valine, leucine and isoleucine biosynthesis, Phenylalanine metabolism, Caffeine metabolism, Retinol metabolism, Alanine, aspartate and glutamate metabolism were selected as the model group disturbed metabolic pathways after the enrichment of MetaboAnalyst 4.0 online analysis software. And compared with the model group, Valine, leucine and isoleucine biosynthesis, Aminoacyl-tRNA biosynthesis, Caffeine metabolism pathway and Retinol metabolism pathways were altered after the intervention of AC. The correlation analysis results showed that various endogenous metabolites in serum have a strong correlation with tumor weight, such as hypoxanthine, which provides a basis for the selection of clinical markers. The results showed that AC can partially regulate metabolic disorder of CC mice by reversing the changes of metabolites, so as to inhibit the growth and metastasis of colon cancer, especially at the ratio of 2:1. These findings can provide a scientific basis for exploring the diagnostic biomarkers of colon cancer, and for clinical application of AC in the treatment of CRC program.


Subject(s)
Astragalus propinquus , Colonic Neoplasms , Animals , Biomarkers , Chromatography, High Pressure Liquid , Colonic Neoplasms/drug therapy , Curcuma , Mass Spectrometry , Metabolomics , Mice
17.
J Pharm Biomed Anal ; 141: 108-122, 2017 Jul 15.
Article in English | MEDLINE | ID: mdl-28437718

ABSTRACT

The adulteration or falsification of the cultivation age of mountain cultivated ginseng (MCG) has been a serious problem in the commercial MCG market. To develop an efficient discrimination tool for the cultivation age and to explore potential age-dependent markers, an optimized ultra high-performance liquid chromatography/quadrupole time-of-flight mass spectrometry (UHPLC/QTOF-MS)-based metabolomics approach was applied in the global metabolite profiling of 156 MCG leaf (MGL) samples aged from 6 to 18 years. Multivariate statistical methods such as principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA) were used to compare the derived patterns between MGL samples of different cultivation ages. The present study demonstrated that 6-18-year-old MGL samples can be successfully discriminated using two simple successive steps, together with four PLS-DA discrimination models. Furthermore, 39 robust age-dependent markers enabling differentiation among the 6-18-year-old MGL samples were discovered. The results were validated by a permutation test and an external test set to verify the predictability and reliability of the established discrimination models. More importantly, without destroying the MCG roots, the proposed approach could also be applied to discriminate MCG root ages indirectly, using a minimum amount of homophyletic MGL samples combined with the established four PLS-DA models and identified markers. Additionally, to the best of our knowledge, this is the first study in which 6-18-year-old MCG root ages have been nondestructively differentiated by analyzing homophyletic MGL samples using UHPLC/QTOF-MS analysis and two simple successive steps together with four PLS-DA models. The method developed in this study can be used as a standard protocol for discriminating and predicting MGL ages directly and homophyletic MCG root ages indirectly.


Subject(s)
Metabolomics , Chromatography, High Pressure Liquid , Mass Spectrometry , Panax , Plant Leaves , Reproducibility of Results
18.
Yao Xue Xue Bao ; 51(10): 1609-15, 2016 10.
Article in Chinese | MEDLINE | ID: mdl-29932609

ABSTRACT

In present study, an ultra-performance liquid chromatography/quadrupole time-of-flight mass spectrometry (UHPLC-QTOF/MS)-based plant metabolomics approach was established to investigate the metabolic profiles of the leaves, main root, branch root, and rhizome of Mountain Cultivated Ginseng (MCG). The UHPLC-QTOF/MS data were subjected to principal component analysis(PCA) and orthogonal partial least squared discrimination analysis(OPLS-DA) to find the potential characteristic components of the four parts of MCG in a quick way. The four different parts could be separated into four different groups of phytochemicals according to the PCA scores. The chemical constituents in four parts of MCG were obviously different. The identities of 81 major peaks that were detected in the four parts of MCG and the potential markers were identified by comparison with the reference compounds or were tentatively assigned by matching the retention time, empirical molecular formula and fragment ions with those of the published compounds of the Panax species. This proposed analytical method is fast, accurate, and reliable for differentiating the different parts of MCG. Moreover, this study supplied a new method for the quality evaluation of other Chinese medicinal materials.


Subject(s)
Metabolomics , Panax/chemistry , Phytochemicals/analysis , Chromatography, High Pressure Liquid , Chromatography, Liquid , Least-Squares Analysis , Plant Leaves/chemistry , Plant Roots/chemistry , Principal Component Analysis , Rhizome/chemistry , Tandem Mass Spectrometry
19.
Zhongguo Zhong Yao Za Zhi ; 41(19): 3609-3614, 2016 Oct.
Article in Chinese | MEDLINE | ID: mdl-28925156

ABSTRACT

Growth year is one of the important factors for the quality of mountain cultivated ginseng (MCG). For age differentiation of MCG, rhizome extracts of ginseng aged from 11 to 15 years were analyzed using a non-targeted approach with ultra-performance liquid chromatography/quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS)-based on plant metabolomics technique. Multivariate statistical methods such as principal component analysis (PCA) and orthogonal partial least squared discrimination analysis (OPLS-DA) were used to compare the derived patterns among the samples. The results showed that the chemical constituents of MCG rhizome extracts of ginseng aged from 11 to 15 years were different. The data set was subsequently applied to metabolite selection by variable importance in the projection (VIP) for sophisticated classification with the optimal number of metabolites. The OPLS-DA model of MCG has a high interpretability and predictive capability, which established by selecting metabolites of MCG aged from 11 to 15 years. By this approach, MCG samples aged from 11 to 15 years, which are the most in demand in the Chinese ginseng market, can be precisely differentiated on the basis of selected metabolites. This proposed analytical method is fast, accurate, and reliable for discriminating the growth year of MCG. Moreover, this study supplies a new method for the age discrimination of other Chinese medicinal materials.


Subject(s)
Chromatography, High Pressure Liquid , Metabolomics , Panax/growth & development , Plant Extracts/analysis , Tandem Mass Spectrometry , Panax/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL