Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 66
Filter
1.
Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi ; 38(4): 448-454, 2024 Apr 15.
Article in Chinese | MEDLINE | ID: mdl-38632065

ABSTRACT

Objective: To compare the early analgesic effects and the impact on knee joint function recovery after unicompartmental knee arthroplasty (UKA) between single adductor canal block (SACB) and continuous adductor canal block (CACB) combined with local infiltration anesthesia (LIA) using a prospective study. Methods: The patients with knee osteoarthritis admitted between April 2022 and December 2023 were enrolled as a subject. Among them, 60 patients met the selection criteria and were enrolled in the study. They were randomly assigned to the SACB group or CACB group in a ratio of 1:1 using a random number table method. There was no significant difference between the two groups ( P>0.05) in terms of age, gender, height, body mass, body mass index, affected side, and preoperative resting visual analogue scale (VAS) score and active VAS score, Oxford knee score (OKS), and American Hospital of Special Surgery (HSS) score. All patients received multimodal analgesia management using LIA combined with SACB or CACB. The operation time, pain related indicators (resting and activity VAS scores, number and timing of breakthrough pain, opioid consumption), joint function related indicators (quadriceps muscle strength, knee range of motion, OKS score, and HSS score), as well as postoperative block complications and adverse events were recorded and compared between the two groups. Results: There was no significant difference in the operation time between the two groups ( P<0.05). All patients in the two groups were followed up with a follow-up time of (9.70±4.93) months in the SACB group and (12.23±5.05) months in the CACB group, and the difference was not significant ( P>0.05). The CACB group had a significant lower resting VAS score at 24 hours after operation compared to the SACB group ( P<0.05). There was no significant difference in resting and active VAS scores between the two groups at other time points ( P>0.05). The CACB group had a significantly lower incidence of breakthrough pain compared to the SACB group [9 cases (30.00%) vs. 17 cases (56.67%); P<0.05). However, there was no significant difference in the timing of breakthrough pain occurrence and opioid consumption between the two groups ( P>0.05). Four cases in the SACB group and 7 cases in the CACB group experienced adverse events, with no significant difference in the incidence of adverse events between the two groups ( P>0.05). The CACB group had significantly better knee joint mobility than the SACB group at 1 and 2 days after operation ( P<0.05). There was no significant difference between the two groups in knee joint mobility on 0 day after operation and quadriceps muscle strength and OKS and HSS scores at different time points ( P>0.05). Conclusion: In UKA, the analgesic effects and knee joint function recovery are similar when compared between LIA combined with SACB and LIA combined with CACB. However, SACB is simpler to perform and can avoid adverse events such as catheter displacement and dislocation. Therefore, SACB may be a better choice.


Subject(s)
Arthroplasty, Replacement, Knee , Breakthrough Pain , Nerve Block , Humans , Analgesics, Opioid , Anesthesia, Local/adverse effects , Arthroplasty, Replacement, Knee/methods , Breakthrough Pain/complications , Nerve Block/adverse effects , Nerve Block/methods , Pain, Postoperative , Postoperative Complications , Prospective Studies
2.
Int Immunopharmacol ; 129: 111656, 2024 Mar 10.
Article in English | MEDLINE | ID: mdl-38340422

ABSTRACT

Geraniin, a chemical component of the traditional Chinese medicine geranii herba, possesses anti-inflammatory and anti-oxidative activities. However, its anti-inflammatory role in managing NLRP3 inflammasome and pyroptosis remains to be elucidated. To investigate the anti-inflammation mechanism of geraniin, LPS-primed macrophages were incubated with classical activators of NLRP3 inflammasome (such as ATP, Nigericin, or MSU crystals), and MSU crystals were injected into the ankle joints of mice to establish an acute gouty arthritis model. The propidium iodide (PI) staining results showed that geraniin could restrain cell death in the ATP- or nigericin-stimulated bone marrow-derived macrophages (BMDMs). Geraniin decreased the release of lactate dehydrogenase (LDH) and interleukin (IL)-1ß from cytoplasm to cell supernatant. Geraniin also inhibited the expression of caspase-1 p20, IL-1ß in cell supernatant and N-terminal of gasdermin D (GSDMD-NT) while blocking the oligomerization of ASC to form speck. The inhibitory effects of geraniin on caspase-1 p20, IL-1ß, GSDMD-NT, and ASC speck were not observed in NLRP3 knockout (NLRP3-/-) BMDMs. Hence, the resistance of geraniin to inflammasome and pyroptosis was contingent upon NLRP3 presence. Geraniin reduced reactive oxygen species (ROS) production and maintained mitochondrial membrane potential while preventing interaction between ASC and NLRP3 protein. Additionally, geraniin diminished MSU crystal-induced mouse ankle joint swelling and IL-1ß expression. Geraniin blocked the recruitment of neutrophils and macrophages to the synovium of joints. Our results demonstrate that geraniin prevents the assembly of ASC and NLRP3 through its antioxidant effect, thereby inhibiting inflammasome activation, pyroptosis, and IL-1ß release to provide potential insights for gouty arthritis targeted therapy.


Subject(s)
Arthritis, Gouty , Glucosides , Hydrolyzable Tannins , Inflammasomes , Mice , Animals , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Arthritis, Gouty/chemically induced , Pyroptosis , Nigericin/pharmacology , Macrophages , Anti-Inflammatory Agents/adverse effects , Adenosine Triphosphate/metabolism , Caspases/metabolism , Interleukin-1beta/metabolism
3.
J Ethnopharmacol ; 321: 117292, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-37806537

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Traditional Chinese medicine views kidney shortage as a significant contributor to the aetiology of Parkinson's disease (PD), a neurodegenerative condition that is closely linked to aging. In clinical, patients with Parkinson's disease are often treated with Testudinis Carapax et Plastrum (Plastrum Testudinis, PT), a traditional Chinese medication that tonifies the kidney. Previous research has demonstrated that ethyl stearate (PubChem CID: 8122), an active component of Plastrum Testudinis Extracted with ethyl acetate (PTE), may encourage neural stem cells (NSCs) development into dopaminergic (DAergic) neurons. However, the effectiveness and mechanism of cotransplantation of ethyl stearate and NSCs in treating PD model rats still require further investigation. AIM OF THE STUDY: PD is a neurodegenerative condition marked by the loss and degradation of dopaminergic neurons in the substantia nigra of the midbrain. Synaptic damage is also a critical pathology in PD. Because of their self-renewal, minimal immunogenicity, and capacity to differentiate into dopaminergic (DAergic) neurons, NSCs are a prospective treatment option for Parkinson's disease cell transplantation therapy. However, encouraging transplanted NSCs to differentiate into dopaminergic neurons and enhancing synaptic plasticity in vivo remains a significant challenge in improving the efficacy of NSCs transplantation for PD. This investigation seeks to examine the efficacy of cotransplantation of NSCs and ethyl stearate in PD model rats and its mechanism related to synaptic plasticity. MATERIALS AND METHODS: On 6-hydroxydopamine-induced PD model rats, we performed NSCs transplantation therapy and cotransplantation therapy involving ethyl stearate and NSCs. Rotating behavior induced by apomorphine (APO) and pole climbing tests were used to evaluate behavioral changes. Using a variety of methods, including Western blotting (WB), immunofluorescence analysis, enzyme-linked immunosorbent assay, and quantitative real-time polymerase chain reaction (qRT-PCR), we examined the function and potential molecular mechanisms of ethyl stearate in combined NSCs transplantation therapy. RESULTS: In the rat PD model, cotransplantation of ethyl stearate with NSCs dramatically reduced motor dysfunction, restored TH protein levels, and boosted dopamine levels in the striatum, according to our findings. Furthermore, the expression levels of SYN1 and PSD95, markers of synaptic plasticity, and BDNF, closely related to synaptic plasticity, were significantly increased. Cotransplantation with ethyl stearate and NSCs also increased the expression levels of Dopamine Receptor D1 (Drd1), an important receptor in the dopamine neural circuit, accompanied by an increase in MMP9 levels, ERK1/2 phosphorylation levels, and c-fos protein levels. CONCLUSIONS: According to the results of our investigation, cotransplantation of ethyl stearate and NSCs significantly improves the condition of PD model rats. We found that cotransplantation of ethyl stearate and NSCs may promote the expression of MMP9 by regulating the Drd1-ERK-AP-1 pathway, thus improving synaptic plasticity after NSCs transplantation. These findings provide new experimental support for the treatment of PD with the kidney tonifying Chinese medicine Plastrum Testudinis and suggest a potential therapeutic strategy for PD based on cotransplantation therapy.


Subject(s)
Neural Stem Cells , Parkinson Disease , Humans , Rats , Animals , Parkinson Disease/drug therapy , Parkinson Disease/metabolism , Dopamine/metabolism , Matrix Metalloproteinase 9/metabolism , Transcription Factor AP-1/metabolism , MAP Kinase Signaling System , Rats, Sprague-Dawley , Neural Stem Cells/metabolism , Dopaminergic Neurons/pathology , Disease Models, Animal
4.
J Ethnopharmacol ; 322: 117621, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38154524

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Angelica Sinensis Radix (ASR) is a commonly used Chinese medicine known for its effects on tonifying blood, promoting blood circulation, and alleviating pain associated with menstrual regulation. Additionally, it has been used in the treatment of vascular cognitive impairment (VCI). The primary pharmacodynamic agent within ASR is volatile oil of Angelica Sinensis Radix (VOASR), which has demonstrated efficacy in combating cognitive impairment, although its mechanism remains unclear. OBJECTIVE: This study aimed to elucidate the potential molecular mechanisms underlying VOASR's improvement of cognitive function in cerebral ischemic mice. METHODS: A model of cerebral ischemic mice was established through unilateral common carotid artery occlusion (UCCAO) surgery, followed by intervention with VOASR. Cognitive function was assessed using the Morris water maze (MWM) test, while RT-qPCR was utilized to measure the differential expression of miR-301a-3p in the hippocampus. To evaluate cognitive function and hippocampal protein differences, wild-type mice and miR-301a-3p knockout mice were subjected to the MWM test and iTRAQ protein profiling. The relationship between miR-301a-3p and potential target genes was validated through a Dual-Luciferase Reporter experiment. RT-qPCR and Western blot were employed to determine the differential expression of Ppp2ca and synaptic plasticity-related proteins in the mouse hippocampus. RESULTS: Intervention with VOASR significantly improved cognitive impairment in cerebral ischemic mice and reduced the expression of miR-301a-3p in the hippocampus. Our findings suggest that miR-301a-3p may regulate cognitive function by targeting Ppp2ca. Furthermore, VOASR intervention led to an increase in the expression of Ppp2ca and synaptic plasticity-related proteins. CONCLUSION: Our study indicates that VOASR may be involved in regulating cognitive function by inhibiting miR-301a-3p, consequently increasing the expression of Ppp2ca and synaptic plasticity proteins. These results provide a new target and direction for the treatment of cognitive dysfunction.


Subject(s)
Angelica sinensis , Brain Ischemia , MicroRNAs , Oils, Volatile , Mice , Animals , MicroRNAs/genetics , MicroRNAs/metabolism , Brain Ischemia/drug therapy , Brain Ischemia/genetics , Cognition
5.
RSC Adv ; 13(32): 22148-22157, 2023 Jul 19.
Article in English | MEDLINE | ID: mdl-37492506

ABSTRACT

The development of natural peptides as direct Kelch-like ECH-associated protein 1 (Keap1)-nuclear factor erythroid2-related factor 2 (Nrf2) protein-protein interaction (PPI) inhibitors for antioxidant and anti-ferroptotic purposes has attracted increasing interest from chemists. Radix Angelicae sinensis (RAS) is a widely used traditional Chinese medicine with antioxidant capability. However, few studies have screened Keap1-Nrf2 PPI inhibitory RAS peptides (RASPs). This study optimized the extraction and hydrolysis protocols of RAS protein using response surface methodology coupled with Box-Behnken design. The molecular weight distribution of the prepared hydrolysates was analysed to obtain active fractions. Subsequently, ultra-performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight tandem mass spectrometry was employed to identify RASPs. Various in vitro and in silico assays were conducted to evaluate the antioxidant and anti-ferroptotic effects of RASPs. The results revealed that at least 50 RASPs could be obtained through the optimized protocols. RASPs containing active residues effectively scavenged 2,2-diphenyl-1-picrylhydrazyl radical and 2,2'-azinobis(3-ethylbenzothiazoline)-6-sulfonic acid radical cation. They also showed cytoprotective effect against erastin-induced ferroptosis in HT22 cells, which was characterized by the activation of Nrf2 and weakened under the incubation of an Nrf2 inhibitor. Moreover, RASPs could bind to Keap1 and then dissociate Nrf2 in molecular dynamics simulations. In conclusion, RASPs exhibit antioxidant activity through hydrogen atom transfer and electron transfer mechanisms. Importantly, they also inhibit ferroptosis by directly inhibiting Keap1-Nrf2 PPI.

6.
Phytother Res ; 37(10): 4607-4620, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37380363

ABSTRACT

Atractylenolide-III (AT-III) is well known as its role in antioxidant and anti-inflammatory. Present study was aimed to figure out its effects on osteoarthritis and potential mechanisms. Rat model, human osteoarthritis cartilage explants as well as rat/human chondrocyte cultures were prepared to test AT-III's effects on osteoarthritis progression and chondrocyte senescence. Potential targeted molecules of AT-III were predicted using network pharmacology and molecular docking, assessed by Western blotting and then verified with rescue experiments. AT-III treatment alleviated osteoarthritis severity (shown by OARSI grading score and micro-CT) and chondrocyte senescence (indexed by levels of SA-ß-gal, P16, P53, MMP13, ROS and ratio of healthy/collapsed mitochondrial membrane potentials). Network pharmacology and molecular docking suggested that AT-III might play role through NF-κB pathway. Further experiments revealed that AT-III reduced phosphorylation of IKKα/ß, IκBα and P65 in NF-κB pathway. As well as nuclear translocation of p65. Both in vivo and in vitro experiments indicated that AT-III's effects on osteoarthritis and anti-senescence were reversed by an NF-κB agonist. AT-III could alleviate osteoarthritis by inhibiting chondrocyte senescence through NF-κB pathway, which indicated that AT-III is a prospective drug for osteoarthritis treatment.

7.
Anat Rec (Hoboken) ; 306(12): 3006-3020, 2023 12.
Article in English | MEDLINE | ID: mdl-35446511

ABSTRACT

Atractylodeslancea Rhizoma (Rhizoma atractylodis [RA]) has long been recommended for the treatment of arthritis in traditional Chinese medicine, but its mechanism of action is still unclear. RA contains a large amount of Atractylodes lancea volatile oils (Atr). In this study, we investigated whether Atr can promote mesenchymal stem cells (MSCs) chondrogenic differentiation. The Atr were extracted from RA by steam distillation method, and the effect of Atr on MSCs was detected by the CCK8 assay. The optimal concentration of Atr for MSCs cultivation was 3 µg/ml. The differentially expressed miR-181a-5p was screened by miRNA microarray assay, and its mimics and inhibitors were transfected into MSCs. It was found that the inhibitor of miR-181a-5p could upregulate cartilage-specific genes such as SOX9, COL2A1, and ACAN. Meanwhile, we also found that the expression of gene editing enzyme ADAR2 was significantly increased in the chondrogenic differentiation of MSCs induced by Atr, and the bases of precursor sequence of miR-181a-5p were changed from A to G. After ADAR2 deletion, the expression of cartilage-specific genes was significantly down-regulated and the precursor sequence bases of miR-181a-5p were not changed. Bioinformatics analysis revealed that the predicted target gene of miR-181a-5p was yingyang1 (YY1), and the targeting relationship was verified by dual-luciferase reporter assay. After deleting YY1, the expression of cartilage-specific genes was significantly down-regulated. In conclusion, our study demonstrated that Atr can promote chondrogenic differentiation of MSC through regulation of the ADAR2-miR-181a-5p signaling pathway. This may provide a new insight into the possible mechanism of traditional Chinese medicine (Atr) in treating inflammatory joint diseases.


Subject(s)
Atractylodes , Mesenchymal Stem Cells , MicroRNAs , Atractylodes/genetics , Atractylodes/metabolism , MicroRNAs/metabolism , Cell Differentiation , Signal Transduction/genetics
8.
Ann Transl Med ; 10(10): 540, 2022 May.
Article in English | MEDLINE | ID: mdl-35722406

ABSTRACT

Background: There is currently no effective treatment for vascular dementia (VaD). Scalp electroacupuncture (EA) has served clinically as an alternative treatment for VaD, but its mechanism is still unclear. In this study, we investigated the effect of EA at the Baihui (GV 20) and Shenting (GV 24) acupoints on spatial learning and memory ability, and the expression level of microRNA-81 (miR-81), interleukin-16 (IL-16), and postsynaptic density protein-95 (PSD-95) in the frontal cortex of VaD rats. Methods: Male Sprague-Dawley rats were randomly divided into four groups, sham, VaD, non-acupuncture (non-AP) and EA group. The VaD model was established by permanent bilateral occlusion of the common carotid arteries. Morris Water Maze was used to assess the rats' spatial learning and memory. Immunochemistry (IHC), quantitative reverse transcription polymerase chain reaction (qRT-PCR), and western blot analysis were performed to detect the expression level of miR-81, IL-16, and PSD-95. Finally, luciferase assay was used to determine the effect of miR-81 on IL-16 expression in PC12 cells. Results: The space exploration experiment of MWM showed the time and distance of the rat's activities around the platform were decreased in the EA group. Compared to the VaD and non-AP group, the number of terminal deoxynucleotidyl transferase-mediated dUDP nick-end labeling (TUNEL)-positive frontal cortical neurons was significantly decreased in EA group. The number of the PSD-95-positive cells and the miR-81 expression level in the frontal cortical in the EA group was dramatically increased in comparison with the other groups. In the PC12 cell validation experiment, IL-16 expression level was reduced under the condition of the miR-81 mimic treatment, while increased in the miR-81 inhibitor group. The PSD-95 protein level was up-regulated in the small interfering (si)RNA-IL16 group compared to the NC-IL16 groups with or without oxygen/glucose deprivation/reperfusion (OGD/R) conditions (P<0.05). However, this was abolished by miR-81 mimic. Conclusions: In VaD rats, EA may improve spatial learning and memory through miR-81/IL-16/PSD-95 pathway.

9.
Front Neurol ; 12: 719354, 2021.
Article in English | MEDLINE | ID: mdl-34566862

ABSTRACT

Background: The complicated molecular mechanisms underlying the therapeutic effect of electroacupuncture (EA) on ischemic stroke are still unclear. Recently, more evidence has revealed the essential role of the microRNA (miRNA)-mRNA networks in ischemic stroke. However, a systematic analysis of novel key genes, miRNAs, and miRNA-mRNA networks regulated by EA in ischemic stroke is still absent. Methods: We established a middle cerebral artery occlusion (MCAO) mouse model and performed EA therapy on ischemic stroke mice. Behavior tests and measurement of infarction area were applied to measure the effect of EA treatment. Then, we performed RNA sequencing to analyze differentially expressed genes (DEGs) and functional enrichment between the EA and control groups. In addition, a protein-protein interaction (PPI) network was built, and hub genes were screened by Cytoscape. Upstream miRNAs were predicted by miRTarBase. Then hub genes and predicted miRNAs were verified as key biomarkers by RT-qPCR. Finally, miRNA-mRNA networks were constructed to explore the potential mechanisms of EA in ischemic stroke. Results: Our analysis revealed that EA treatment could significantly alleviate neurological deficits in the affected limbs and reduce infarct area of the MCAO model mice. A total of 174 significant DEGs, including 53 upregulated genes and 121 downregulated genes, were identified between the EA and control groups. Functional enrichment analysis showed that these DEGs were associated with the FOXO signaling pathway, NF-kappa B signaling pathway, T-cell receptor signaling pathway, and other vital pathways. The top 10 genes with the highest degree scores were identified as hub genes based on the degree method, but only seven genes were verified as key genes according to RT-qPCR. Twelve upstream miRNAs were predicted to target the seven key genes. However, only four miRNAs were significantly upregulated and indicated favorable effects of EA treatment. Finally, comprehensive analysis of the results identified the miR-425-5p-Cdk1, mmu-miR-1186b-Prc1, mmu-miR-434-3p-Prc1, and mmu-miR-453-Prc1 miRNA-mRNA networks as key networks that are regulated by EA and linked to ischemic stroke. These networks might mainly take place in neuronal cells regulated by EA in ischemic stroke. Conclusion: In summary, our study identified key DEGs, miRNAs, and miRNA-mRNA regulatory networks that may help to facilitate the understanding of the molecular mechanism underlying the effect of EA treatment on ischemic stroke.

10.
Front Pharmacol ; 12: 690501, 2021.
Article in English | MEDLINE | ID: mdl-34381360

ABSTRACT

Colorectal cancer (CRC) has become a global public health problem because of its high incidence and mortality rate worldwide. The previous clinical treatment for CRC mainly involves conventional surgery, chemotherapy, and radiotherapy. With the development of tumor molecular targeted therapy, small molecule inhibitors present a great advantage in improving the survival of patients with advanced CRC. However, various side effects and drug resistance induced by chemotherapy are still the major obstacles to improve the clinical benefit. Thus, it is crucial to find new and alternative drugs for CRC treatment. Traditional Chinese medicines (TCMs) have been proved to have low toxicity and multi-target characteristics. In the last few decades, an increasing number of studies have demonstrated that TCMs exhibit strong anticancer effects in both experimental and clinical models and may serve as alternative chemotherapy agents for CRC treatment. Notably, Wnt/ß-catenin signaling pathway plays a vital role in the initiation and progression of CRC by modulating the stability of ß-catenin in the cytoplasm. Targeting Wnt/ß-catenin pathway is a novel direction for developing therapies for CRC. In this review, we outlined the anti-tumor effects of small molecular inhibitors on CRC through Wnt/ß-catenin pathway. More importantly, we focused on the potential role of TCMs against tumors by targeting Wnt/ß-catenin signaling at different stages of CRC, including precancerous lesions, early stage of CRC and advanced CRC. Furthermore, we also discussed perspectives to develop potential new drugs from TCMs via Wnt/ß-catenin pathway for the treatment of CRC.

11.
J Ethnopharmacol ; 280: 114397, 2021 Nov 15.
Article in English | MEDLINE | ID: mdl-34245831

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Spleen-invigorating pills (SIP) are composed of Codonopsis, fried Atractylodes, tangerine peel, Fructus aurantii immaturus (fried), fried hawthorn, and colored malt. SIP strengthens the spleen and increases appetite and is often used as a chemotherapy adjuvant. AIM OF THE STUDY: We aimed to explore the protective effects and mechanism of action for SIP on mouse bone marrow stromal cells (OP9) injured by 5-fluorouracil (5-FU). MATERIALS AND METHODS: The effects of SIP on OP9 cells injured by 5-FU were evaluated, and high-performance liquid chromatography (HPLC) was used as a quality control method. The experiments were divided into a control group, a model group, an epidermal growth factor (EGF) treatment group, and an SIP treatment group. The cell survival rate, apoptotic cell morphology, cell apoptosis rate, and the contents of caspase 3 were evaluated to determine the protective effects of SIP in OP9 cells injured by 5-FU. Network pharmacology was used to predict the mechanism through which SIP mediates anti-chemotherapy damage. The nitric oxide (NO) and nitric oxide synthase (iNOS) levels and the expression of nuclear factor erythroid-2 related factor 2 (Nrf2) and p62 protein were detected to explore the mechanism through which SIP mediates anti-chemotherapy damage through the regulation of oxidative stress. RESULTS: Cell counting kit-8 (CCK8) detection showed that 5-FU reduced OP9 cell survival, and SIP blocked the inhibition of OP9 cell growth induced by 5-FU. When OP9 cells were treated with both SIP (10 g L-1) and 5-FU (2.5 × 10-2 g L-1) for 24 h, compared with the model group, the early apoptosis rates significantly decreased, and the activity of caspase 3 was significantly reduced. The results of network pharmacology and Western blot showed that compared with the model group, in the SIP group, the NO levels decreased, iNOS release decreased, and the expression of Nrf2 and p62 proteins increased. CONCLUSION: The protective effects of SIP on OP9 cells injured by 5-FU were significant. SIP may play a cytoprotective role by mediating changes in oxidative stress-related proteins. The specific mechanism of action through which SIP mediates these effects remains to be further studied.


Subject(s)
Drugs, Chinese Herbal/pharmacology , Fluorouracil/toxicity , Mesenchymal Stem Cells/drug effects , Spleen/drug effects , Animals , Antimetabolites, Antineoplastic/toxicity , Apoptosis/drug effects , Cell Survival/drug effects , Cells, Cultured , Mesenchymal Stem Cells/pathology , Mice , Network Pharmacology , Nitric Oxide Synthase Type II/metabolism , Oxidative Stress/drug effects , Spleen/cytology , Spleen/pathology
12.
Article in English | MEDLINE | ID: mdl-34122606

ABSTRACT

Ferroptosis is associated with neural degeneration of dopaminergic neurons in Parkinson's disease (PD). However, how to control the level of ferroptosis in PD remains unclear. Clinically, moxibustion has been used to treat PD and has an apparent therapeutic effect on improving the motor symptoms of PD. In the present study, the PD rat model was constructed by two-point stereotactic 6-hydroxydopamine injection. Then, moxibustion was used to treat the PD rats. The expression of glutathione peroxidase 4 (GPX4) and Ferritin Heavy Chain 1 (FTH1), the level of reactive oxygen species (ROS), and the morphology of mitochondrial were detected to evaluate the level of ferroptosis. The results showed that moxibustion treatment of Shi's moxa sticks could reduce the behavioral score, alleviate the level of ferroptosis, decrease mitochondrial damage, and improve dopaminergic neuron survival. In conclusion, the present study results indicated that Shi's moxa sticks could effectively suppress the level of ferroptosis, thereby improving the survival of dopaminergic neurons in the SNpc of PD rats, which may provide a promising complementary and alternative therapy for PD patients.

13.
Biomed Pharmacother ; 141: 111832, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34153844

ABSTRACT

The pathological characteristics of Parkinson's disease (PD) include dopaminergic neuron damage, specifically disorders caused by dopamine synthesis, in vivo. Plastrum testudinis extract (PTE) and its bioactive ingredient ethyl stearate (PubChem CID: 8122) were reported to be correlated with tyrosine hydroxylase (TH), which is a biomarker of dopaminergic neurons. This suggests that PTE and its small-molecule active ingredient ethyl stearate have potential for development as a therapeutic drug for PD. In this study, we treated 6-hydroxydopamine (6-OHDA)-induced model rats and PC12 cells with PTE. The mechanism of action of PTE and ethyl stearate was investigated by western blotting, bisulfite sequencing PCR (BSP), real-time PCR, immunofluorescence and siRNA transfection. PTE effectively upregulated the TH expression and downregulated the alpha-synuclein expression in both the substantia nigra and the striatum of the midbrain in a PD model rat. The PC12 cell model showed that both PTE and its active monomer ethyl stearate significantly promoted TH expression and blocked alpha-synuclein, agreeing with the in vivo results. BSP showed that PTE and ethyl stearate increased the methylation level of the Snca intron 1 region. These findings suggest that some of the protective effects of PTE on dopaminergic neurons are mediated by ethyl stearate. The mechanism of ethyl stearate may involve disrupting the abnormal aggregation of DNA (cytosine-5)-methyltransferase 1 (DNMT1) with alpha-synuclein by releasing DNMT1, upregulating Snca intron 1 CpG island methylation, and ultimately, reducing the expression of alpha-synuclein.


Subject(s)
Antiparkinson Agents/pharmacology , Antiparkinson Agents/therapeutic use , DNA (Cytosine-5-)-Methyltransferase 1/metabolism , Dopaminergic Neurons/drug effects , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Parkinson Disease, Secondary/drug therapy , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Tissue Extracts/chemistry , alpha-Synuclein/metabolism , Animals , DNA (Cytosine-5-)-Methyltransferase 1/drug effects , Hydroxydopamines , Male , Mesencephalon/drug effects , Mesencephalon/metabolism , PC12 Cells , Parkinson Disease, Secondary/chemically induced , Rats , Rats, Sprague-Dawley , Stearates/pharmacology , Substantia Nigra/drug effects , Substantia Nigra/metabolism , alpha-Synuclein/drug effects
14.
Therap Adv Gastroenterol ; 14: 17562848211004469, 2021.
Article in English | MEDLINE | ID: mdl-33948112

ABSTRACT

BACKGROUND: The community of gut microbes is a key factor controlling the intestinal barrier that communicates with the nervous system through the gut-brain axis. Based on our clinical data showing that populations of Roseburia intestinalis are dramatically decreased in the gut of patients with ulcerative colitis, we studied the efficacy of a strain belonging to this species in the context of colitis and stress using animal models. METHODS: Dextran sulfate sodium was used to induce colitis in rats, which then underwent an enema with R. intestinalis as a treatment. The disease activity index, fecal changes and body weight of rats were recorded to evaluate colitis, while histological and immunohistochemical analyses were carried out to examine colon function, and 16S rRNA sequencing was performed to evaluate the gut microbiota change. Behavioral assays and immunohistochemical staining of brain were performed to assess the effect of R. intestinalis on the gut-brain axis. RESULTS: Colitis-related symptoms in rats were significantly relieved after R. intestinalis enema, and the stool traits and colon length of rats were significantly recovered after treatment. The gut epithelial integrity and intestinal barrier were restored in treated rats, as evidenced by the higher expression of Zo-1 in colon tissues, accompanied by the restoration of gut microbiota. Meanwhile, depressive-like behaviors of rats were reduced after treatment, and laboratory experiments on neuronal cells also showed that IL-6, IL-7 and 5-HT were downregulated by R. intestinalis treatment in both serum and brain tissue, while Iba-1 expression was reduced in treated rats. CONCLUSIONS: The administration of R. intestinalis contributes to restoration of the gut microbiota, promoting colon repair and the recovery of gastrointestinal function. These alterations are accompanied by the relief of depressive-like behaviors through a process modulated by the neuronal network and the regulation of inflammation by the gut-brain axis.

15.
Complement Ther Clin Pract ; 43: 101370, 2021 May.
Article in English | MEDLINE | ID: mdl-33894576

ABSTRACT

In 1954, the term "probiotics" was coined by Ferdinand Vergin in his article. Although there are many clinical reports on the use of pro/synbiotics and other microbial preparations to prevent postoperative infections and related complications in patients with Colorectal cancer (CRC), their effectiveness remains divided. Therefore, we collected relevant high-quality randomized controlled trial (RCT) studies and conducted systematic review and meta-analysis. We electronically searched online databases (the PubMed, EMBASE, MEDLINE, Cochrane Central Register of Controlled Trials (CENTRAL), Allied and Alternative Medieine (AMED), China National Knowledge Infrastructure (CNKI), Wanfang, and Weipu) for literature published until December 2020. These reports were rigorously screened, and the data extracted, assessed for risk of bias (ROB), and subjected to meta-analysis and subgroup analysis. Postoperative infections were the main criteria for outcomes. Nineteen high-quality articles were included, involving 1975 patients. Compared with the control group, the pro/synbiotics group had reduced total postoperative infections ((odds ratio)OR = 0.28, 95% (confidence interval)CI: 0.20; 0.39, p < 0.0001), which included surgical site infections (SSI) (OR = 0.43, 95% CI: 0.31; 0.58, p < 0.0001) and non-surgical site infections (non-SSI) (OR = 0.28 95% CI: 0.20; 0.39, p < 0.0001).What is more, in aspects of inflammatory factors, intestinal dysbiosis, non-infectious complications, and systemic symptoms, the treatment group was better than the control group. However, there were no differences in perineal infections (OR = 0.45, 95% CI: 0.13; 1.50, p = 0.1933), celiac infections (OR = 0.54, 95% CI: 0.11; 2.66, p = 0.4471), or systemic inflammatory response syndrome (SIRS) incidence (OR = 0.63, 95% CI: 0.31; 1.30, p = 0.2139), etc. There were no differences in intervention (probiotics or synbiotics), strain type (multistrain or non-multistrain probiotics), and intervention time (administration preoperatively or pre-and-postoperatively). Pro/synbiotics can effectively prevent postoperative infections and related complications in patients with CRC. The strain type and intervention time did not affect the treatment effects.


Subject(s)
Colorectal Neoplasms , Probiotics , Synbiotics , China , Humans , Postoperative Complications/drug therapy , Probiotics/therapeutic use
16.
Article in English | MEDLINE | ID: mdl-32382312

ABSTRACT

In recent years, stem cells have gained much attention for the treatment of neurodegenerative diseases. However, inducing neural stem cell directionally differentiation is a difficult problem in the treatment of Parkinson's disease (PD) by stem cell therapy. Plastrum Testudinis (PT) can enhance the number of TH-positive neurons in the PD rat brain substantia nigra, but the underlying mechanism has not been clarified. Here, we aimed at further investigating the mechanism by which PT can promote NSC differentiation into dopaminergic neurons. A rat model of PD was used for detecting the effect of PT on the rat brain substantia nigra in vivo. The results showed the expressions of tyrosine hydroxylase (TH) and TET1 enzyme were increased after treatment with PT. Consequently, Plastrum Testudinis extracts (PTEs) were used for inducing NSC differentiation into dopaminergic neurons ex vivo. During differentiation of NSCs induced by PTE, TH expression was increased, with a concomitant increase in both TET1 and FoxA2. Next, we performed coimmunoprecipitation analysis to examine the interaction between TET1 protein and FoxA2 protein. Our results show that PTE can increase the binding rate of TET1 and FoxA2. Thus, our findings show that PTE can increase the efficiency of NSCs to directionally differentiate into dopaminergic neurons and provide experimental evidence for PT in the treatment of Parkinson's disease.

17.
Sci Rep ; 9(1): 19370, 2019 12 18.
Article in English | MEDLINE | ID: mdl-31852965

ABSTRACT

Sepsis is a life-threatening disease caused by infection. Inflammation is a key pathogenic process in sepsis. Paeonol, an active ingredient in moutan cortex (a Chinese herb), has many pharmacological activities, such as anti-inflammatory and antitumour actions. Previous studies have indicated that paeonol inhibits the expression of HMGB1 and the transcriptional activity of NF-κB. However, its underlying mechanism is still unknown. In this study, microarray assay and reverse transcription-quantitative polymerase chain reaction (RT-qPCR) results confirmed that paeonol could significantly up-regulate the expression of miR-339-5p in RAW264.7 cells stimulated by LPS. Dual-luciferase assays indicated that miR-339-5p interacted with the 3' untranslated region (3'-UTR) of HMGB1. Western blot, immunofluorescence and enzyme-linked immunosorbent assay (ELISA) analyses indicated that miR-339-5p mimic and siHMGB1 both negatively regulated the expression and secretion of inflammatory cytokines (e.g., HMGB1, IL-1ß and TNF-α) in LPS-induced RAW264.7 cells. Studies have confirmed that IKK-ß is targeted by miR-339-5p, and we further found that paeonol could inhibit IKK-ß expression. Positive mutual feedback between HMGB1 and IKK-ß was observed when we silenced HMGB1 or IKK-ß. These results indicated that paeonol could attenuate the inflammation mediated by HMGB1 and IKK-ß by upregulating miR-339-5p expression. In addition, we constructed CLP model mice by cecal ligation and puncture. Paeonol was used to intervene to investigate its anti-inflammatory effect in vivo. The results showed that paeonol could improve the survival rate of sepsis mice and protect the kidney of sepsis mice.


Subject(s)
Acetophenones/pharmacology , HMGB1 Protein/genetics , Inflammation/drug therapy , MicroRNAs/genetics , Sepsis/drug therapy , Acetophenones/chemistry , Animals , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Disease Models, Animal , Drugs, Chinese Herbal/chemistry , Gene Expression Regulation/drug effects , Humans , Inflammation/chemically induced , Inflammation/genetics , Inflammation/pathology , Lipopolysaccharides/toxicity , Mice , NF-kappa B/genetics , Paeonia/chemistry , RAW 264.7 Cells , Sepsis/genetics , Sepsis/pathology
18.
BMC Complement Altern Med ; 19(1): 275, 2019 Oct 21.
Article in English | MEDLINE | ID: mdl-31638966

ABSTRACT

BACKGROUND: Pyrola decorata H. Andres, is exclusively distributed in China and a source of traditional Chinese herbal medicine Luxiancao for more than 2000 years. Here, we evaluated the antioxidant and cytoprotective effects of P. decorata and its five phenolic components (protocatechuic acid, gallic acid, hyperoside, 2''-O-galloylhyperin, and quercetin), and discussed their antioxidant chemistry. METHODS: A lyophilized aqueous extract of P. decorata (LAEP) was prepared and analyzed with high-performance liquid chromatography (HPLC). LAEP and its five phenolic components were comparatively investigated using five antioxidant assays, including ferric-reducing antioxidant power, cupric ion-reducing antioxidant capacity, 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide radical (PTIO•)-scavenging, 1,1-diphenyl-2-picryl-hydrazl radical (DPPH•)-scavenging, and 2,2'-azino-bis(3-ethylbenzo-thiazoline-6-sulfonic acid) radical (ABTS+•)-scavenging activities. The reaction products of the five phenolic components with 4-methoxy-2,2,6,6-tetramethylpiperidine-1-oxyl radical (4-methoxy-TEMPO•) were determined with ultra-performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight tandem mass spectrometry (UPLC-ESI-Q-TOF-MS/MS) analysis. LAEP and its five phenolic components were incubated with bone marrow-derived mesenchymal stem cells (bmMSCs) subjected to oxidative stress to demonstrate their cytoprotective effects with a flow cytometry assay. RESULTS: In the five antioxidant assays, LAEP and its five phenolic components dose-dependently increased the radical-scavenging (or reducing power) activities. However, the IC50 values of hyperoside were consistently higher than those of 2''-O-galloylhyperin. UPLC-ESI-Q-TOF-MS/MS analysis results indicated that the five phenolics could yield dimer products in the presence of 4-methoxy-TEMPO• via the radical adduct formation (RAF) pathway. Flow cytometry assay results confirmed the cytoprotective activity of LAEP and its five phenolic components toward stressed bmMSCs. In particular, 2''-O-galloylhyperin could more effectively reduce the percentage of damaged bmMSCs than hyperoside. CONCLUSION: LAEP and its five phenolic components may undergo redox-based pathways (such as electron transfer and H+ transfer) and covalent-based pathway (i.e., RAF) to exhibit antioxidant activity. One consequence of RAF is the generation of phenolic-phenolic dimer. In both organic and aqueous media, 2''-O-galloylhyperin exhibited higher redox-based antioxidant levels (or cytoprotective levels) than those with hyperoside. The differences could be attributed to 2''-O-galloylation reaction.


Subject(s)
Antioxidants/chemistry , Drugs, Chinese Herbal/chemistry , Phenols/chemistry , Protective Agents/chemistry , Pyrola/chemistry , Antioxidants/pharmacology , Cell Line , Cell Survival/drug effects , China , Chromatography, High Pressure Liquid , Humans , Molecular Structure , Phenols/pharmacology , Protective Agents/pharmacology , Tandem Mass Spectrometry
19.
Chin J Nat Med ; 17(7): 506-516, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31514982

ABSTRACT

MSC transplantation has been explored as a new clinical approach to stem cell-based therapies for bone diseases in regenerative medicine due to their osteogenic capability. However, only a small population of implanted MSC could successfully reach the injured areas. Therefore, enhancing MSC migration could be a beneficial strategy to improve the therapeutic potential of cell transplantation. Catharmus tinctorius volatile oil (CTVO) was found to facilitate MSC migration. Further exploration of the underlying molecular mechanism participating in the pro-migratory ability may provide a novel strategy to improve MSC transplantation efficacy. This study indicated that CTVO promotes MSC migration through enhancing ROCK2 mRNA and protein expressions. MSC migration induced by CTVO was blunted by ROCK2 inhibitor, which also decreased myosin light chain (MLC) phosphorylation. Meanwhile, the siRNA for ROCK2 inhibited the effect of CTVO on MSC migration ability and attenuated MLC phosphorylation, suggesting that CTVO may promote BMSC migration via the ROCK2/MLC signaling. Taken together, this study indicates that C. tinctorius volatile oil could enhance MSC migration via ROCK2/MLC signaling in vitro. C. tinctorius volatile oil-targeted therapy could be a beneficial strategy to improve the therapeutic potential of cell transplantation for bone diseases in regenerative medicine.


Subject(s)
Carthamus tinctorius/chemistry , Cell Movement/drug effects , Mesenchymal Stem Cells/drug effects , Myosin Light Chains/metabolism , Oils, Volatile/pharmacology , rho-Associated Kinases/metabolism , Animals , Cell Proliferation/drug effects , Cell Survival , Cells, Cultured , Male , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/pathology , Myosin Light Chains/genetics , Oils, Volatile/chemistry , Phosphorylation , Plant Extracts/chemistry , Plant Extracts/pharmacology , Rats, Sprague-Dawley , Signal Transduction/drug effects , rho-Associated Kinases/antagonists & inhibitors , rho-Associated Kinases/genetics
20.
Article in English | MEDLINE | ID: mdl-31467572

ABSTRACT

The objective of this study was to explore the neuroprotective effect of moxibustion on rats with Parkinson's disease (PD) and its mechanism. A Parkinson's disease model was established in rats using a two-point stereotactic 6-hydroxydopamine injection in the right substantia nigra (SN) and ventral tegmental area. The rats received moxibustion at the Baihui (GV20) and Sishencong (EX-HN1) acupoints for 20 minutes, six times a week, for 6 weeks. The right SN tissue was histologically and immunohistochemically examined. Differentially expressed genes (DEGs) were identified through RNA sequencing. In addition, the levels of tyrosine hydroxylase (TH), glutathione peroxidase 4 (GPX4), and ferritin heavy chain 1 (FTH1) in SN were measured. In comparison to the model group, the moxibustion group showed a significantly greater TH immunoreactivity and a higher behavioural score. In particular, moxibustion led to an increase in the number and morphological stability of SN neural cells. The functional pathway analysis showed that DEGs are closely related to the ferroptosis pathway. GPX4 and FTH1 in the SN were significantly overexpressed in the moxibustion-treated rats with PD. Moxibustion can effectively reduce the death of SN neurons, decrease the occurrence of ferroptosis, and increase the TH activity to protect the neurons in rats with PD. The protective mechanism may be associated with suppression of the ferroptosis.

SELECTION OF CITATIONS
SEARCH DETAIL