Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
1.
Phytomedicine ; 128: 155397, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38547623

ABSTRACT

BACKGROUND: Acute lung injury (ALI) often leads to serious respiratory diseases with high incidence rates and mortality. For centuries, Xiebai San (XBS) has been a classical traditional Chinese medicine (TCM) about respiratory illness such as pneumonia in children. However, the related mechanism of XBS against ALI remains indistinct. PURPOSE: To reveal specific targets of XBS in lipopolysaccharide (LPS)-induced ALI mice using integrated pharmacology. STUDY DESIGN: The integrated method was to expound mechanism and targets of XBS inhibited ALI. METHODS: The primary components in XBS were identified by ultra high performance liquid chromatography-quadrupole time of flight-mass spectrometry (UHPLC-QTOF-MS). The potential drug targets were established using network pharmacology. The anti-ALI effect of XBS was evaluated in mice. Additionally, therapeutic targets were screened by integrating metabolome and transcriptome and verified in lung tissue. RESULTS: In total, 163 chemical components were identified in XBS, and a network of "3 drugs-18 components-86 targets" for XBS against ALI was constructed. In ALI mice, XBS alleviated lung inflammation by decreasing permeation and expression of neutrophils, tumor necrosis factor α (TNF-α), interleukin-6 (IL-6), and interleukin-1ß (IL-1ß) in bronchoalveolar lavage fluid (BALF), serum, and lung tissue. Next, the transcriptome of lung tissue was analyzed and enriched, indicating the importance of mitogen-activated protein kinase (MAPK), Janus kinase-signal transducer and activator of transcription (JAK-STAT), and others, which was consistent with network pharmacology prediction. Also, western blotting and immunohistochemistry results showed that XBS was against ALI mainly by inhibiting extracellular signal regulated kinase (ERK) and signal transducer and activator of transcription 3 (Stat3) phosphorylation. In addition, the metabolome of lung tissue revealed that XBS mainly regulated pathways involved in arachidonic acid, glycerophospholipid, and tryptophan metabolisms. The expression levels of leukotriene, phosphatidylcholine, kynurenine, and others were also verified. CONCLUSION: XBS alleviated inflammation of ALI by inhibiting the phosphorylation of the ERK/Stat3 pathway and regulating arachidonic acid, glycerophospholipid, and tryptophan metabolisms. This study will guide clinical precision medicine and promote modernization of XBS.


Subject(s)
Acute Lung Injury , Drugs, Chinese Herbal , STAT3 Transcription Factor , Acute Lung Injury/drug therapy , Acute Lung Injury/metabolism , Animals , STAT3 Transcription Factor/metabolism , Drugs, Chinese Herbal/pharmacology , Mice , Male , Phosphorylation/drug effects , Lipopolysaccharides , MAP Kinase Signaling System/drug effects , Lung/drug effects , Lung/metabolism , Mice, Inbred C57BL , Disease Models, Animal , Network Pharmacology , Signal Transduction/drug effects
2.
Environ Sci Pollut Res Int ; 31(17): 25940-25951, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38491238

ABSTRACT

Pesticide residue was one of the stress factors affecting quality and safety of Chinese herbal medicines (CHMs). The present study was designed to investigate the occurrence and dietary exposure of 70 pesticide residues in 307 samples of CHMs, including 104 American ginseng, 100 Ganoderma lucidum (G. lucidum), and 103 Dendrobium officinale (D. officinale) in Shandong Province, China. The study revealed that a total of 29 pesticides were detected in the majority (92.5%) of samples, and the pesticide residues of 85 (27.7%) samples exceeded the maximum residue levels (MRLs). Particularly, the maximum concentration of chlorpyrifos was 23.8 mg kg-1, almost 50 times of the MRLs in food in GB 2763-2021, while there's no standard restrictions specified in CHMs in China. The chronic, acute, and cumulative risk assessment results indicated that risk exposure of the three types of CHMs were unlikely to pose a health risk to consumers. However, more attention should be paid to the multiple residues with the presence of four or more pesticides in one sample and high over-standard rate of pesticides. The pesticide users and the government should pay more attention to the pesticides used in CHMs and regularly monitor the presence of these compounds. The study recommended the MRLs of these pesticides in CHMs should be established and perfected by the relevant departments in China.


Subject(s)
Pesticide Residues , Pesticides , Pesticide Residues/analysis , Pesticides/analysis , Food , China , Food Contamination/analysis , Plant Extracts , Risk Assessment
3.
New Phytol ; 241(2): 779-792, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37933426

ABSTRACT

(+)-Nootkatone is a natural sesquiterpene ketone widely used in food, cosmetics, pharmaceuticals, and agriculture. It is also regarded as one of the most valuable terpenes used commercially. However, plants contain trace amounts of (+)-nootkatone, and extraction from plants is insufficient to meet market demand. Alpinia oxyphylla is a well-known medicinal plant in China, and (+)-nootkatone is one of the main components within the fruits. By transcriptome mining and functional screening using a precursor-providing yeast chassis, the complete (+)-nootkatone biosynthetic pathway in Alpinia oxyphylla was identified. A (+)-valencene synthase (AoVS) was identified as a novel monocot-derived valencene synthase; three (+)-valencene oxidases AoCYP6 (CYP71BB2), AoCYP9 (CYP71CX8), and AoCYP18 (CYP701A170) were identified by constructing a valencene-providing yeast strain. With further characterisation of a cytochrome P450 reductase (AoCPR1) and three dehydrogenases (AoSDR1/2/3), we successfully reconstructed the (+)-nootkatone biosynthetic pathway in Saccharomyces cerevisiae, representing a basis for its biotechnological production. Identifying the biosynthetic pathway of (+)-nootkatone in A. oxyphylla unravelled the molecular mechanism underlying its formation in planta and also supported the bioengineering production of (+)-nootkatone. The highly efficient yeast chassis screening method could be used to elucidate the complete biosynthetic pathway of other valuable plant natural products in future.


Subject(s)
Alpinia , Plants, Medicinal , Sesquiterpenes , Alpinia/metabolism , Saccharomyces cerevisiae/metabolism , Sesquiterpenes/metabolism , Plants, Medicinal/metabolism
4.
Biomed Pharmacother ; 170: 116016, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38128180

ABSTRACT

BACKGROUND: Ovarian cancer (OC) is the most lethal gynecological malignancy. Frequent peritoneal dissemination is the main cause of low survival rate. Guizhi-Fuling Wan (GZFL) is a classical traditional Chinese herbal formula that has been clinically used for treating ovarian cancer with good outcome. However, its therapeutic mechanism for treating OC has not been clearly elucidated. PURPOSE: We aim to elucidate the potential mechanisms of GZFL in treating OC with a focus on STAT3 signaling pathway. METHODS: In vivo efficacy of GZFL was assessed using an OC xenograft mouse model. Proteomics analysis in OC cells and RNA-seq analysis in mice tumors were performed to fully capture the translational and transcriptional signature of GZFL. Effects of GZFL on proliferation, spheroid formation and reactive oxygen species (ROS) were assessed using wildtype and STAT3 knockout OC cells in vitro. STAT3 activation and transcription activity, hypoxia and EMT-related protein expression were assessed to validate the biological activity of GZFL. RESULTS: GZFL suppresses tumor growth with a safety profile in mice, while prevents cell growth, spheroid formation and accumulates ROS in a STAT3-dependent manner in vitro. GZFL transcriptionally and translationally affects genes involved in inflammatory signaling, EMT, cell migration, and cellular hypoxic stress response. In depth molecular study confirmed that GZFL-induced cytotoxicity and EMT suppression in OC cells are directly corelated to inhibition of STAT3 activation and transcription activity. CONCLUSION: Our study provides the first evidence that GZFL inhibits OC progression through suppressing STAT3-EMT signaling. These results will further support its potential clinical use in OC.


Subject(s)
Ovarian Neoplasms , Proteomics , Humans , Mice , Female , Animals , Reactive Oxygen Species/metabolism , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/genetics , Ovarian Neoplasms/metabolism , Disease Models, Animal , Gene Expression Profiling , Cell Line, Tumor , STAT3 Transcription Factor/metabolism
5.
J Orthop Surg Res ; 18(1): 922, 2023 Dec 02.
Article in English | MEDLINE | ID: mdl-38042770

ABSTRACT

BACKGROUND: Knee osteoarthritis (KOA) is the most common chronic degenerative joint disease and places a substantial burden on the public health resources in China. The purpose of this study is to preliminarily evaluate whether infrared laser moxibustion (ILM) is non-inferior to traditional moxibustion (TM) in the treatment of KOA. MATERIALS AND METHODS: In the designed Zelen-design randomized controlled non-inferiority clinical trial, a total of 74 patients with KOA will be randomly allocated to one of two interventions: ILM treatment or TM treatment. All participants will receive a 6-week treatment and a follow-up 4 weeks after treatment. The primary outcomes will be the mean change in pain scores on the numeric rating scale (NRS) measured at baseline and the end of last treatment at week 6. The secondary outcomes will be the pain scores on the NRS from weeks 1 to 5 after the start of treatment and the changes from baseline to endpoints (weeks 6 and 10) in the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC), SF-36, knee circumference, and 6-min walking test. In addition, safety assessment will be performed throughout the trial. CONCLUSION: The results of our study will help determine whether a 6-week treatment with ILM is non-inferior to TM in patients with KOA, therefore providing evidence to verify if ILM can become a safer alternative for TM in clinical applications in the future. TRIAL REGISTRATION: Clinical Trial Registration Platform (ChiCTR2200065264); Pre-results. Registered on 1 November 2022.


Subject(s)
Moxibustion , Osteoarthritis, Knee , Humans , Osteoarthritis, Knee/therapy , Osteoarthritis, Knee/complications , Moxibustion/adverse effects , Moxibustion/methods , Knee Joint , Pain , Lasers , Treatment Outcome , Randomized Controlled Trials as Topic
6.
Curr Opin Biotechnol ; 84: 102996, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37806082

ABSTRACT

The tumor microenvironment (TME) consists of a network of metabolically interconnected tumor and immune cell types. Macrophages influence the metabolic composition within the TME, which directly impacts the metabolic state and drug response of tumors. The accumulation of oncometabolites, such as succinate, fumarate, and 2-hydroxyglutarate, represents metabolic vulnerabilities in cancer that can be targeted therapeutically. Immunometabolites are emerging as metabolic regulators of the TME impacting immune cell functions and cancer cell growth. Here, we discuss recent discoveries on the potential impact of itaconate on the TME. We highlight how itaconate influences metabolic pathways relevant to immune responses and cancer cell proliferation. We also consider the therapeutic implications of manipulating itaconate metabolism as an immunotherapeutic strategy to constrain tumor growth.


Subject(s)
Neoplasms , Tumor Microenvironment , Humans , Succinates/metabolism , Neoplasms/drug therapy , Succinic Acid/metabolism
7.
BMC Complement Med Ther ; 23(1): 286, 2023 Aug 14.
Article in English | MEDLINE | ID: mdl-37580785

ABSTRACT

BACKGROUND: Tea (Camellia sinensis L.) flowers will compete with tea leaves in nutrition and are abandoned as an undesirable by-product. In this study, the biological efficacy of tea flowers was investigated. Further exploration of its antifungal activity was explained. METHODS: Tea flowers harvested from China were characterized in term of component, antioxidant ability, tyrosinase inhibition, and antifungal ability. Chemical compounds of tea flowers were analyzed by LC-MS. Disinfectant compounds were identified in tea flowers, and 2-ketobutyric acid exhibited antifungal activity against Aspergillus flavusCCTCC AF 2023038. The antifungal mechanism of 2-ketobutyric acid was further investigated by RNA-seq. RESULTS: Water-soluble tea flower extracts (TFEs) exhibited free radical scavenging activity against 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2, 2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)(ABTS) as well as a high ferric-reducing ability. However, no inhibition of tyrosinase activity was observed. In the antifungal test, 6.4 mg/mL TFE reached 71.5% antifungal rate and the electrical conductivity of the culture broth increased with increasing concentration of TFE, implying that it damaged the fungal cell membrane by the TFE. Several disinfectants were identified in TFE by LC-MS, and 2-ketobutyric acid was also confirmed to be capable of fungal inhibition. Propidium iodide (PI) staining indicated that 2-ketobutyric acid caused damage to the cell membrane. RNA-seq analysis revealed that 3,808 differentially expressed genes (DEGs) were found in A. flavus CCTCC AF 2023038 treated by 2-ketobutyric acid, and more than 1,000 DEGs involved in the integral and intrinsic component of membrane were affected. Moreover, 2-ketobutyric acid downregulated aflatoxin biosynthesis genes and decreased the aflatoxin production. CONCLUSIONS: Overall, TFE exhibited excellent antioxidant ability and fungal inhibition against A. flavus CCTCC AF 2023038 due to its abundant disinfectant compounds. As a recognized food additive, 2-ketobutyric acid is safe to use in the food industry and can be utilized as the basis for the research and development of strong fungicides.


Subject(s)
Camellia sinensis , Flowers , Plant Extracts , Antifungal Agents/pharmacology , Aspergillus flavus/drug effects , Camellia sinensis/chemistry , Flowers/chemistry , Plant Extracts/pharmacology
8.
J Pharm Biomed Anal ; 234: 115528, 2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37331205

ABSTRACT

Pulsatilla chinensis (P.chinensis) is a traditional Chinese medicine used for the treatment of intestinal amebiasis diseases, vaginal trichomoniasis and bacterial infections. Tritepenoid saponins were important components of P.chinensis. Therefore, we asssessmented expression profiling of triterpenoids in different fresh tissues of P.chinensis by ultra high performance liquid chromatography coupled to quadrupole-time-of-flight mass spectrometry (UHPLC-Q-TOF-MS) and ultra high performance liquid chromatography coupled to triple quadrupole mass spectrometry (UHPLC-QQQ-MS). Firstly, we identified 132 triterpenoids, including 119 triterpenoid saponins, 13 triterpenoid acids and forty seven of them were first determined in Pulsatilla genus, including new aglycones and new ways of rhamnose linking to the aglycone. Secondly, we established the analytical method to analysis triterpenoids content of P.chinensis and comprehensively verified the analytical method by linearity, precision, repeatability, stability and recovery. At last, we quantified 119 triterpenoids simultaneously based on UHPLC-QQQ-MS. The results show that the types and contents of triterpenoids had obvious tissue distribution. New components like rhamnose directly linked to the aglycone mainely distributed in aboveground tissues. Additionally, We identified 15 chemical ingredients as differential components between the aboveground and underground tissues of P.chinensis. This study provides an efficient analysis strategy for the qualitative and quantitative analysis of triterpenoids in P.chinensis even in other traditional Chinese medicines. At the same time, it provides important informations to explain the biosynthetic pathway of triterpenoid saponins in P.chinensis.


Subject(s)
Drugs, Chinese Herbal , Pulsatilla , Saponins , Triterpenes , Pulsatilla/chemistry , Triterpenes/analysis , Rhamnose , Mass Spectrometry/methods , Chromatography, High Pressure Liquid/methods , Saponins/chemistry , Drugs, Chinese Herbal/chemistry
9.
J Ethnopharmacol ; 306: 116171, 2023 Apr 24.
Article in English | MEDLINE | ID: mdl-36646156

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Modified Dingchuan Decoction (MDD) is a Chinese medicine formula containing 11 materials with cough suppression, asthma relief, and anti-inflammatory effects. AIM OF THE STUDY: This study aimed to evaluate the therapeutic effect of MDD on cough-variant asthma (CVA) and to investigate its mechanism of action. MATERIALS AND METHODS: The chemical constituents of MDD were analyzed by ultra-performance liquid chromatography-quadrupole/electrostatic field orbitrap high-resolution mass spectrometry (UPLC-Q-Orbitrap HRMS). A guinea pig CVA model was established using an intramuscular injection of ovalbumin (OVA), combined with an intraperitoneal injection of aluminum hydroxide [Al(OH)3] and nebulized OVA. At the beginning of day 18, the low, medium, and high MDD groups were gavaged with 7.23 g/kg, 14.46 g/kg, and 28.92 g/kg of MDD, respectively, and the positive group was gavaged with 5 mg/kg of prednisone acetate combined with 1 mg/kg of montelukast sodium; the normal and model groups were given an equal volume of distilled water, once a day for 21 days. The cough was induced by 10-3 mol/L capsaicin solution 1 h after the last administration, and the number of coughs and the latency of coughs were evaluated. Hematoxylin and eosin staining (H&E) was used to observe pathological changes in the lungs and airways. The concentration of inflammatory factors in bronchoalveolar lavage fluid (BALF) was measured by enzyme-linked immunosorbent assay (ELISA). We analyzed the lung microbiota using 16 S ribosomal DNA (16 S rDNA) high-throughput sequencing. RESULTS: The 38 chemical components were found in MDD, and MDD reduced the number of coughs in guinea pigs with CVA, prolonged cough latency, improved pathological damage to the lungs and airways, regulated inflammatory factor levels in BALF, and modulated the lung microbiota. CONCLUSIONS: This study demonstrated that treating CVA with MDD may be related to inhibiting lung inflammation and regulating lung microbiota.


Subject(s)
Asthma , Pneumonia , Animals , Guinea Pigs , Mice , Cough/drug therapy , Lung , Asthma/drug therapy , Bronchoalveolar Lavage Fluid , Pneumonia/pathology , Ovalbumin/pharmacology , Disease Models, Animal , Mice, Inbred BALB C , Inflammation/pathology
10.
J Ethnopharmacol ; 304: 116046, 2023 Mar 25.
Article in English | MEDLINE | ID: mdl-36567042

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANT: Erxian Decoction (EXD) has been used empirically for more than 70 years to treat premature ovarian failure (POF), but more research is needed to understand how it works. AIM OF THE RESEARCH: The study aims to ascertain both in vivo and in vitro rewards of EXD. MATERIALS AND METHODS: EXD is composed of Curculiginis Rhizoma, Epimedii Folium, Morindae Officinalis, Angelicae Sinensis, Anemarrhenae Rhizoma, and Phellodendri Chinensis Cortex. UPLC/MS analysis was used to investigate the components of EXD. Using a POF model created by administering cisplatin to rats intraperitoneally, the pharmacodynamic effects of EXD were investigated. Three dose groups of EXD were garaged into rats: high (15.6 g/kg), medium (7.8 g/kg), and low (3.9 g/kg). By using a vaginal smear, the impact of EXD on the rat estrous cycle was evaluated. An ELISA test was used to measure the anti-Mullerian hormone (AMH), estradiol (E2), follicle-stimulating hormone (FSH), and luteinizing hormone (LH) levels in the serum of rats. By using HE stains, pathological alterations in the ovaries may be seen. MDA and SOD levels in ovarian samples were used to measure the degree of ovarian oxidation. TUNEL labeling of ovarian sections was used to find apoptosis levels. By using ATP, energy production was evaluated. The relative expression of proteins connected to aging and the RAGE pathway was assessed using Western blot. Then, using H2O2, a model of senescent human ovarian granulosa cells (KGN) was created in vitro. The impact of EXD and H2O2 on cellular senescence was discovered using-galactosidase staining. Cell apoptosis levels were found using PI/Hoechest33342. By using DCFH-DA, intracellular ROS was examined. MDA and SOD concentrations were used to measure the degree of cellular oxidation. RAGE-related mRNA and protein expression were evaluated using RT-qPCR and western blotting. RESULTS: Using UPLC/MS analysis, 39 chemicals in EXD were found. Rats' estrous cycles were enhanced by EXD, which increased ovarian index and follicle count and reduced the proportion of atretic follicles in the rats. EXD reduced LH and FSH output while restoring AMH and E2 secretion. In ovarian tissues, EXD reduced the amount of apoptosis and MDA while raising SOD activity and ATP levels. The protein levels of p16, p21, p53, and Lamin A/C were among the senescence-related proteins that EXD lowered, along with the levels of RAGE, PI3K, BAX, and CASPASE 3. Anti-apoptotic protein BCL-2 was also raised in the RAGE pathway. Senescence, apoptosis, ROS, and MDA levels in the KGN cells were lowered in vitro by EXD. Additionally, EXD increased the anti-apoptotic potential by changing the expression of CAT, SOD2, and SIRT1. RAGE, BAX, BCL-2, CASPASE 3, and p38 expression levels were altered by EXD, enhancing its anti-apoptotic capability. CONCLUSION: EXD boosted the ovary's antioxidant and anti-apoptotic capabilities while enhancing the estrous cycle and hormone output. These findings strongly suggested that EXD may contribute to the alleviation of POF and ovarian granulosa cells senescence.


Subject(s)
Drugs, Chinese Herbal , Primary Ovarian Insufficiency , Animals , Female , Humans , Rats , Adenosine Triphosphate/metabolism , bcl-2-Associated X Protein/metabolism , Caspase 3/metabolism , Cisplatin/adverse effects , Drugs, Chinese Herbal/therapeutic use , Follicle Stimulating Hormone/metabolism , Granulosa Cells/metabolism , Hydrogen Peroxide/metabolism , Primary Ovarian Insufficiency/chemically induced , Primary Ovarian Insufficiency/drug therapy , Primary Ovarian Insufficiency/pathology , Reactive Oxygen Species/metabolism , Superoxide Dismutase/metabolism
11.
Nano Lett ; 22(20): 8321-8330, 2022 Oct 26.
Article in English | MEDLINE | ID: mdl-36222477

ABSTRACT

Ti3C2-MXene-based composites provide multifunctional interfaces in diagnosis and treatment of tumors. Herein, we proposed a multifunctional nanoplatform based on Ti3C2-MXene-Au nanocomposites, which combines photothermal properties and peroxidase-like activity, accomplishing synergistic photothermal therapy (PTT) and enzyme dynamic therapy (EDT) accompanied by photoacoustic (PA) and thermal dual-mode imaging in vivo. Furthermore, PTT induces immunogenic cell death, and EDT promotes cell apoptosis, facilitating dendritic cell (DC) maturation and T cell infiltration into the tumor. On this basis, the antibody OX40 (αOX40) was utilized to further contribute immune therapy for reversing the immunosuppressive tumor microenvironment by activating CD4+ and CD8+ T cells. In summary, a triune of PTT/EDT/antitumor immune therapy is achieved by combining Ti3C2-MXene-Au nanocomposites and αOX40, which possesses several strong features of good biocompatibility, NIR-controlled targeting, significant cancer cell killing, and satisfactory biosafety in vitro and in vivo. Our work might highlight the promising application of MXene-based nanoplatforms for cancer therapy.


Subject(s)
Nanocomposites , Nanoparticles , Neoplasms , Humans , Photothermal Therapy , Titanium/therapeutic use , CD8-Positive T-Lymphocytes , Nanocomposites/therapeutic use , Peroxidases , Phototherapy , Cell Line, Tumor , Tumor Microenvironment
12.
Bot Stud ; 63(1): 20, 2022 Jul 02.
Article in English | MEDLINE | ID: mdl-35779152

ABSTRACT

BACKGROUND: Medical plants confer various benefits to human health and their bioconversion through microbial fermentation can increase efficacy, reduce toxicity, conserve resources and produce new chemical components. In this study, the cholesterol-lowering monacolin K genes and content produced by Monascus species were identified. The high-yield monacolin K strain further fermented with various medicinal plants. The antioxidant and anti-inflammatory activities, red pigment and monacolin K content, total phenolic content, and metabolites in the fermented products were analyzed. RESULTS: Monacolin K was detected in Monascus pilosus (BCRC 38072), and Monascus ruber (BCRC 31533, 31523, 31534, 31535, and 33323). It responded to the highly homologous mokA and mokE genes encoding polyketide synthase and dehydrogenase. The high-yield monacolin K strain, M. ruber BCRC 31535, was used for fermentation with various medicinal plants. A positive relationship between the antioxidant capacity and total phenol content of the fermented products was observed after 60 days of fermentation, and both declined after 120 days of fermentation. By contrast, red pigment and monacolin K accumulated over time during fermentation, and the highest monacolin K content was observed in the fermentation of Glycyrrhiza uralensis, as confirmed by RT-qPCR. Moreover, Monascus-fermented medicinal plants including Paeonia lactiflora, Alpinia oxyphylla, G. uralensis, and rice were not cytotoxic. Only the product of Monascus-fermented G. uralensis significantly exhibited the anti-inflammatory capacity in a dose-dependent manner in lipopolysaccharide-induced Raw264.7 cells. The metabolites of G. uralensis with and without fermentation (60 days) were compared by LC/MS. 2,3-Dihydroxybenzoic acid, 3,4-dihydroxyphenylglycol, and 3-amino-4-hydroxybenzoate were considered to enhance the antioxidant and anti-inflammatory ability. CONCLUSIONS: Given that highly homologous monacolin K and citrinin genes can be observed in Monascus spp., monacolin K produced by Monascus species without citrinin genes can be detected through the complementary methods of PCR and HPLC. In addition, the optimal fermentation time was important to the acquisition of antioxidants, red pigment and monacolin K. These bioactive substances were significantly affected by medicinal plants over fermentation time. Consequently, Monascus-fermented G. uralensis had a broad spectrum of biological activities.

13.
Nano Lett ; 22(8): 3228-3235, 2022 04 27.
Article in English | MEDLINE | ID: mdl-35380847

ABSTRACT

Theranostic agents based on inorganic nanomaterials are still suffered from the nonbiodegradable substances with long-term retention in body and unavoidable biological toxicity, as well as nonspecificity biodistribution with potential damage toward normal tissues. Here, we develop magnetic ions (FeIII, FeII, GdIII, MnII, and MnIII) coordinated nanoplatform (MICN) with framework structure and modify them with PEG (MICN-PEG). Notably, MICN-PEG demonstrates hydroxide ions (OH-) triggered the structure collapse along with responsive near-infrared photoacoustic (PA) signal, magnetic resonance imaging (MRI), and photothermal therapy (PTT) performances. Thereby, MICN-PEG is able to remain stable in tumors and exert excellent PA/MRI and PTT effects for multimodal imaging-guided cancer treatment. In contrast, MICN-PEG is gradually collapsed in normal tissues, resulting in the significant improvement of imaging accuracy and treatment specificity. MICN-PEG is gradually cleared after administration, minimizing concerns about the long-term toxicity.


Subject(s)
Nanoparticles , Neoplasms , Cell Line, Tumor , Ferric Compounds , Hydroxides , Magnetic Resonance Imaging/methods , Nanoparticles/chemistry , Neoplasms/diagnostic imaging , Neoplasms/drug therapy , Phototherapy , Precision Medicine , Theranostic Nanomedicine/methods , Tissue Distribution
14.
Transl Psychiatry ; 11(1): 546, 2021 10 23.
Article in English | MEDLINE | ID: mdl-34689151

ABSTRACT

Mindfulness-based interventions such as meditation have increasingly been utilized for the treatment of psychological disorders and have been shown to be effective in the treatment of depression and relapse prevention. However, it remains largely unclear the neural mechanism of the therapeutic effects of meditation among depressed individuals. In this study, we investigated how body-mind relaxation meditation (BMRM) can modulate the thalamocortical functional connectivity (FC) in major depressive disorder patients and healthy controls. In the present study, we recruited 21 medication-naive adolescents with major depressive disorder (MDDs) and 24 matched healthy controls (HCs). We designed an audio recording to induce body-mind relaxation meditation. Resting-state fMRI (rs-fMRI) scans were collected before and after the BMRM intervention in both groups. The thalamus subregions were defined according to the Human Brainnetome Atlas, and functional connectivity (FC) was measured and compared to find brain regions that were affected by the BMRM intervention. Before the BMRM intervention, MDDs showed reduced FC of the bilateral precuneus/post cingulate cortex with the left posterior parietal thalamus and left caudal temporal thalamus, as well as an increased FC of the left occipital thalamus with the left medial frontal cortex. Moreover, aberrant FCs in MDDs at baseline were normalized following the BMRM intervention. After the BMRM intervention, both MDDs and HCs showed decreased FC between the left rostral temporal thalamus and the left inferior occipital. Given the small sample used in this study, future studies are warranted to evaluate the generalizability of these findings. Our findings suggest that BMRM is associated with changes in thalamocortical functional connectivity in MDDs. BMRM may act by strengthening connections between the thalamus and the default mode network, which are involved in a variety of high-level functioning, such as attention and self-related processes.


Subject(s)
Depressive Disorder, Major , Meditation , Adolescent , Brain , Brain Mapping , Depressive Disorder, Major/diagnostic imaging , Depressive Disorder, Major/therapy , Humans , Magnetic Resonance Imaging
15.
Nano Lett ; 21(18): 7796-7805, 2021 09 22.
Article in English | MEDLINE | ID: mdl-34516141

ABSTRACT

Immunotherapy holds great promise for patients undergoing tumor treatment. However, the clinical effect of immunotherapy is limited because of tumor immunogenicity and its immunosuppressive microenvironment. Herein, the metal-organic framework (MIL-100) loaded with chemotherapeutic agent mitoxantrone (MTO) was combined with photothermal-chemotherapy for enhancing immunogenic cell death. MIL-100 loaded with MTO and hyaluronic acid as nanoparticles (MMH NPs) yielded an NP with two therapeutic properties (photothermal and chemotherapy) with dual imaging modes (photoacoustic and thermal). When MMH NPs were coinjected with an anti-OX40 antibody in colorectal cancer, the highest antitumor efficacy and a robust immune effect were achieved. This work provides a novel combined therapeutic strategy, which will hold great promise in future tumor therapy.


Subject(s)
Metal-Organic Frameworks , Nanoparticles , Neoplasms , Cell Line, Tumor , Drug Delivery Systems , Humans , Immunotherapy , Neoplasms/drug therapy , Phototherapy , Tumor Microenvironment
16.
Acta Biomater ; 134: 621-632, 2021 10 15.
Article in English | MEDLINE | ID: mdl-34329782

ABSTRACT

Colorectal cancer (CRC) is the second leading cause of cancer-related deaths worldwide. The primary treatment for CRC is surgical resection, along with chemotherapy in more advanced or inoperable cases. There is a growing interest to complement both curative and palliative treatment with immunotherapies such as the programmed cell death-1 (PD-1) and PD-ligand 1 (PDL1) checkpoint inhibitors and transforming growth factor (TGF) ß inhibitors. However, the clinical outcomes of current immunotherapeutic strategies are limited by tumor heterogeneity and drug resistance. Nanomedicine-based photothermal therapy (PTT) has shown encouraging results for solid tumor ablation. Herein, we designed and synthesized gold nanocages functionalized with primary macrophage membrane and surface anti-PDL1 antibody, and loaded with a TGFß inhibitor, galunisertib. The GNC-Gal@CMaP nanocomposites achieved low-temperature PTT and immunogenic cell death, which subsequently enhanced the anti-tumor efficacy of anti-PDL1 antibody and galunisertib via activation of antigen-presenting cells that primed tumor-specific effector T cells. This study provides experimental proof for a combination of immunotherapy and PTT against CRC. STATEMENT OF SIGNIFICANCE: The combination of photothermal therapy (PTT) with immunotherapy can achieve an inherently synergistic anti-tumor effect. Here we integrated low-temperature PTT, PDL1 antibody and TGF-ß inhibitor in hollow gold nanocage nanocomposites (GNC-Gal@CMaP) that selectively targeted colon cancer cells and accumulated in the tumor microenvironment. The GNC-Gal@CMaP nanocomposites achieved low-temperature PTT and immunogenic cell death, which subsequently enhanced the anti-tumor efficacy of anti-PDL1 antibody and galunisertib via activation of antigen-presenting cells that primed tumor-specific effector T cells. This study provides experimental proof for a combination of immunotherapy and PTT against CRC.


Subject(s)
Colorectal Neoplasms , Gold , Antibodies, Monoclonal, Humanized , Colorectal Neoplasms/drug therapy , Humans , Immunotherapy , Phototherapy , Photothermal Therapy , Pyrazoles , Quinolines , Tumor Microenvironment
17.
Chin J Nat Med ; 18(8): 620-627, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32768169

ABSTRACT

Platelet microparticles (PMPs) are membrane particles derived from the platelet membrane that enter into the blood circulation. We sought to explore the therapeutic effects of Tao-Hong-Si-Wu Decoction (THSWD) on angiogenesis in a rat model of cerebral ischaemia-reperfusion (I/R). The protective effect of THSWD on I/R rats was observed morphologically by immunohistochemical expression of VEGF and CD34, along with immunofluorescence results of co-expression of BrdU and vWF. Then, PMPs from different groups of rats were extracted, and cytokine array analysis was used to screen for angiogenesis associated proteins. The results showed that THSWD can promote the expression of VEGF, CD34, BrdU and vWF. Cytokine array analysis revealed the changes in the expression of 29 related angiogenic proteins in the total protein of PMPs, which involved the Notch signalling pathway. Compared with model group, the expression levels of NICD and Hes-1 in the THSWD group were significantly increased. In the context of I/R, the angiogenesis-related proteins of PMPs are different. THSWD may involve the promotion of activation of the Notch signalling pathway to achieve therapeutic effects on cerebral ischaemia.


Subject(s)
Angiogenesis Inducing Agents/pharmacology , Blood Platelets/metabolism , Brain Ischemia/drug therapy , Cell-Derived Microparticles/metabolism , Drugs, Chinese Herbal/pharmacology , Animals , China , Disease Models, Animal , Male , Rats , Rats, Sprague-Dawley
18.
Molecules ; 24(12)2019 Jun 15.
Article in English | MEDLINE | ID: mdl-31208101

ABSTRACT

A chemical investigation of the fibrous roots of Anemarrhena asphodeloides Bge. led to the isolation of four benzophenones, including one new compound (1) and three known ones (2-4). Comprehensive 1D, 2D NMR and HRESIMS data established the structures of the isolated compounds. The absolute configurations were determined by comparison of the calculated optical rotation (OR) with experimental data. All the isolates were evaluated for their cytotoxicities on hepatocellular carcinoma cell lines (HepG2 and Hep3B). Compound 1 showed strong cytotoxicity against HepG2 and Hep3B cells, with IC50 values at 153.1 and 180.6 nM. Through MTT assay, flow cytometry and Western blot analysis, compound 1 demonstrated the ability to stimulate apoptosis via the NF-κB signaling pathway in HepG2 cells. These benzophenones are potential lead compounds for the development of better treatments for hepatocellular carcinoma.


Subject(s)
Anemarrhena/chemistry , Antineoplastic Agents, Phytogenic/pharmacology , Benzophenones/pharmacology , Plant Extracts/pharmacology , Antineoplastic Agents, Phytogenic/chemistry , Apoptosis/drug effects , Benzophenones/chemistry , Cell Survival/drug effects , Hep G2 Cells , Humans , Magnetic Resonance Spectroscopy , Molecular Structure , NF-kappa B/metabolism , Plant Extracts/chemistry , Plant Roots/chemistry , Signal Transduction/drug effects , Structure-Activity Relationship
19.
Fitoterapia ; 128: 1-6, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29723561

ABSTRACT

Twenty-seven monoterpene indole alkaloids (MIAs) including three new ones were isolated from the plant of Rhazya stricta. Their structures were elucidated by analyses of HRMS and NMR data. Secopleiocarpamine A (1) represents a novel 2,3-seco pleiocarpamine type MIA possessing a cyano group. A possible biosynthetic pathway for 1 was postulated. All compounds were evaluated for their inhibitory activities against six Candida strains, and the results showed that 2, 5, 12, 21, 23, and 27 exhibited moderate inhibitory activities with MIC values ranging from 3.125 to 50 µg/mL.


Subject(s)
Apocynaceae/chemistry , Indole Alkaloids/isolation & purification , Monoterpenes/isolation & purification , Candida/drug effects , Microbial Sensitivity Tests , Molecular Structure
20.
J Affect Disord ; 234: 297-304, 2018 07.
Article in English | MEDLINE | ID: mdl-29587165

ABSTRACT

BACKGROUND: Major depressive disorder (MDD) is characterized by impairments in emotional and cognitive functions. Emerging studies have shown that cognition and emotion interact by reaching identical brain regions, and the insula is one such region with functional and structural heterogeneity. Although previous literatures have shown the role of insula in MDD,it remains unclear whether the insular subregions show differential change patterns in MDD. METHODS: Using the resting-state fMRI data in a group of 23 drug-free MDD patients and 34 healthy controls (HCs), we investigated whether the abnormal connectivity patterns of insular sub-regions or any behavioural correlates can be detected in MDD. Further hierarchical cluster analysis was used to identify the functional connectivity-clustering patterns of insular sub-regions. RESULTS: Compared with HCs, the MDD exhibited higher connectivities between dorsal agranular insula and inferior parietal lobule and between ventral dysgranular and granular insula and thalamus/habehula, and lower connectivity of hypergranular insula to subgenual anterior cingulate cortex. Moreover, the three subregions with significant group differences were in three separate functional systems along anterior-to-posteior gradient. The anterior and middle insula showed positive correlation with depressive severity, while the posterior insular was to the contrary. LIMITATIONS: The small and unbalanced sample size, only included moderate and severe depression and the possible inter-individual differences may limit the interpretability. CONCLUSIONS: These findings provided evidences for the MDD-related effects in functional connectivity patterns of insular subregions, and revealed that the subregions might be involved in different neural circuits associated with the contrary impacts on the depressive symptoms.


Subject(s)
Cerebral Cortex/physiopathology , Depressive Disorder, Major/physiopathology , Neural Pathways/physiopathology , Adult , Female , Gyrus Cinguli/physiopathology , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Neuroimaging , Parietal Lobe/physiopathology , Thalamus/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL