Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Molecules ; 19(6): 8503-17, 2014 Jun 23.
Article in English | MEDLINE | ID: mdl-24959678

ABSTRACT

Commiphora opobalsamum is a Traditional Chinese Medicine used to treat traumatic injury, mainly by relaxing blood vessels. In this study, two diterpenes, dehydroabietic acid (DA) and sandaracopimaric acid (SA) were obtained from it by a bioassay-guided approach using isolated rat pulmonary artery rings. The structures of the two compounds were elucidated by spectroscopic methods (IR, 1H- and 13C-NMR, HR-ESI-MS). Both DA and SA reduced the contraction of phenylephrine-induced pulmonary arteries in a concentration-dependent manner, and endothelium contributed greatly to the vasodilatory effect of DA. This effect of DA was attenuated by NG-Nitro-L-arginine methyl ester (L-NAME, an eNOS inhibitor). Meanwhile, DA increased nitric oxide (NO) production, along with the increase of phosphorylation level of eNOS and Akt in endothelial cells. LY294002 (a PI3K inhibitor) could reverse this effect, which suggested the endothelial PI3K/Akt pathway involved in the mechanism underlying DA-induced relaxation of pulmonary artery. This work provided evidence of vasorelaxant substances in Commiphora opobalsamum and validated that PI3K/Akt-eNOS pathway was associated with DA-induced pulmonary artery vasodilation.


Subject(s)
Abietanes/pharmacology , Diterpenes/pharmacology , Phosphoinositide-3 Kinase Inhibitors , Pulmonary Artery/physiology , Vasodilation/drug effects , Abietanes/chemistry , Animals , Cells, Cultured , Chromones/pharmacology , Commiphora/metabolism , Diterpenes/chemistry , Drug Evaluation, Preclinical , Endothelial Cells/physiology , Enzyme Inhibitors/pharmacology , Male , Medicine, Chinese Traditional , Morpholines/pharmacology , NG-Nitroarginine Methyl Ester/pharmacology , Nitric Oxide/biosynthesis , Nitric Oxide Synthase Type III/metabolism , Phosphatidylinositol 3-Kinase/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Pulmonary Artery/cytology , Rats , Rats, Wistar , Signal Transduction/drug effects
2.
J Ethnopharmacol ; 148(1): 37-44, 2013 Jun 21.
Article in English | MEDLINE | ID: mdl-23567033

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Caesalpinia sappan L. is distributed in Southeast Asia and also used as herbal medicine for the treatment of various diseases such as burning sensations, leprosy, dysentery, osteoarthritis and rheumatoid arthritis (RA). The overproduction of IL-6 plays an important role in the prognosis of RA, but the active compounds from the extracts of Caesalpinia sappan L. suppressing IL-6 production remain unknown. AIMS OF THE STUDY: Identifying the main active compounds of Caesalpinia sappan L. extracts inhibiting the IL-6 production in LPS-stimulated RAW 264.7 cells by partial least squares (PLS). MATERIALS AND METHODS: Sixty-four samples with different proportions of compounds were prepared from Caesalpinia sappan L. by supercritical CO2 fluid extraction (SCFE) and refluxing. Each of 64 samples was applied to RAW 264.7 cells with LPS to evaluate whether IL-6 production by LPS is affected by addition of each sample. The IL-6 production in medium was determined by ELISA and the inhibitory activity of each sample was analyzed. In addition, the fingerprints of these 64 samples were also established by ultra-performance liquid chromatography electrospray ionization tandem mass spectrometry (UPLC-MS). We used the PLS, a simplified method, to evaluate the results from IL-6 production and fingerprints. RESULTS: Each of 64 samples markedly suppressed LPS-induced IL-6 production in RAW cells. The fingerprints by UPLC-MS clearly revealed variations among 64 samples produced in different extract conditions. The PLS analysis with IL-6 production and fingerprints by UPLC-MS suggested that the peaks 71, 93, 150, 157, 168 have more influence on the inhibitory activity of Caesalpinia sappan L. extracts. The peaks 71, 93, 150 are likely representing sappanone A, protosappanin E and neoprotosappanin, respectively. The peaks 157 and 168 are still at large. CONCLUSION: This is the first report that sappanone A, protosappanin E, neoprotosappanin and two unidentified compounds can be considered as possible active compounds that might inhibit IL-6 production. Further studies are needed to confirm the effectiveness of these five compounds on IL-6 production and possible mechanism.


Subject(s)
Caesalpinia , Interleukin-6/antagonists & inhibitors , Plant Extracts/pharmacology , Animals , Cell Line , Ethanol/chemistry , Interleukin-6/metabolism , Least-Squares Analysis , Lipopolysaccharides , Mice , Plant Extracts/analysis , Solvents/chemistry , Wood/chemistry
3.
Mol Immunol ; 44(10): 2686-96, 2007 Apr.
Article in English | MEDLINE | ID: mdl-17223196

ABSTRACT

Inhibition of dendritic cell (DC) migration into tissues and secondary lymphoid organs is an efficient way to induce immunosuppression and tolerance. CCR7 and PGE(2) are critical for DC migration to secondary lymphoid organs where DC initiate immune response. Triptolide, an active component purified from the medicinal plant Tripterygium Wilfordii Hook F., is a potent immunosuppressive drug capable of prolonging allograft survival in organ transplantation by inhibiting T cell activation and proliferation. Considering the essential role in T cell tolerance of DC migration to secondary lymphoid organs, here we demonstrate that triptolide can significantly inhibit LPS-triggered upregulation of CCR7 expression and PGE(2) production by inhibiting cyclooxygenase-2 (COX-2) expression in DC, thus impairing DC migration towards CCR7 ligand CCL19/MIP-3betain vitro. Moreover, triptolide-treated DC display impaired migration into secondary lymphoid organs and in vivo administration of triptolide also inhibits DC migration. Further studies show that the triptolide-mediated inhibitory effects of LPS-induced activation of phosphatidylinositol-3 kinase (PI3-K)/Akt and nuclear NF-kappaB activation are involved in down-regulation of COX-2 and CCR7 expression resulting in impaired migration to secondary lymphoid organs of DC. Therefore, inhibition of DC migration through decreasing COX-2 and CCR7 expression via PI3-K/Akt and NF-kappaB signal pathways provides additional mechanistic explanation for triptolide's immunosuppressive effect.


Subject(s)
Cell Movement/drug effects , Cyclooxygenase 2/metabolism , Dendritic Cells/drug effects , Diterpenes/pharmacology , Immunosuppressive Agents/pharmacology , Phenanthrenes/pharmacology , Receptors, Chemokine/antagonists & inhibitors , Animals , Chemokine CCL19 , Chemokines, CC/metabolism , Cytokines/metabolism , Dinoprostone/metabolism , Epoxy Compounds/pharmacology , Lipopolysaccharides/pharmacology , Male , Mice , Mice, Inbred C57BL , NF-kappa B/antagonists & inhibitors , Phosphoinositide-3 Kinase Inhibitors , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Receptors, CCR7 , Receptors, Chemokine/metabolism
4.
Biochem Biophys Res Commun ; 345(3): 1122-30, 2006 Jul 07.
Article in English | MEDLINE | ID: mdl-16713992

ABSTRACT

Triptolide, an active component purified from the medicinal plant Tripterygium wilfordii Hook F., is potent in anti-inflammation and immunosuppression. Dendritic cells (DC), one of important targets of immunosuppressants, play crucial roles in linking the innate immunity and adaptive immunity. However, the effects of triptolide on DC have not been fully elucidated. Chemoattraction of neutrophils and T cells by DC may favor their interactions and initiation of immune response. Here we demonstrate that triptolide significantly impairs DC-mediated chemoattraction of neutrophils and T cells both in vitro and in vivo by suppressing DC production of CC and CXC chemokines including MIP-1alpha, MIP-1beta, MCP-1, RANTES, TARC, and IP-10 in response to LPS. Furthermore, triptolide-mediated inhibition of NF-kappaB activation, Stat3 phosphorylation and increase of SOCS1 expression in DC may be involved in the inhibitory effect of triptolide. Our study provides a novel mechanistic explanation for the anti-inflammatory and immunosuppressive activities of triptolide.


Subject(s)
Dendritic Cells/cytology , Diterpenes/pharmacology , Immunosuppressive Agents/pharmacology , NF-kappa B/metabolism , Neutrophils/cytology , Phenanthrenes/pharmacology , STAT3 Transcription Factor/metabolism , T-Lymphocytes/cytology , Animals , Anti-Inflammatory Agents/pharmacology , Bone Marrow Cells/cytology , Dendritic Cells/metabolism , Epoxy Compounds , Intracellular Signaling Peptides and Proteins/metabolism , Male , Mice , Mice, Inbred C57BL , Phosphorylation , Repressor Proteins/metabolism , Suppressor of Cytokine Signaling 1 Protein , Suppressor of Cytokine Signaling Proteins/metabolism , T-Lymphocytes/metabolism
5.
J Cell Biochem ; 88(5): 932-40, 2003 Apr 01.
Article in English | MEDLINE | ID: mdl-12616532

ABSTRACT

The enzyme, glucosamine-6-phosphate isomerase (GNPI) or deaminase (GNPDA) (EC 5.3.1.10), catalyzes the conversion of GNP to fructose-6-phosphate and ammonia, with an aldo/keto isomerization and an amination/deamination. A hamster sperm-derived protein (Oscillin) with high similarity to bacterial GNPI has been proved to be capable of inducing calcium oscillation in eggs at fertilization. GNPI/Oscillin was supposed to be an important factor in starting embryonic development. From the cDNA library of human dendritic cells (DC), we isolated a novel full-length cDNA encoding a 276-amino acid-residue protein that shares high homology with human GNPI/Oscillin. So, the novel molecule is named as GNPI2. The GNPI2 gene consists of seven exons and six introns. It is mapped to chromosome 4. Northern blot analysis indicated that the tissue distribution of GNPI2 mRNA is different from that of human GNPI or Oscillin mRNA. GNPI2 is ubiquitously expressed in most of human tissues with high expression in testis, ovary, placenta, and heart. Like GNPI, the recombinant GNPI2 has been proved to have the enzymatic activity to catalyze the conversion of GNP to fructose-6-phosphate. Our results indicated that GNPI2 is a novel protein with definite function as a GNPI.


Subject(s)
Aldose-Ketose Isomerases/biosynthesis , Aldose-Ketose Isomerases/chemistry , Aldose-Ketose Isomerases/genetics , Amino Acid Sequence , Animals , Base Sequence , COS Cells , Calcium-Binding Proteins , Cloning, Molecular , DNA, Complementary/biosynthesis , DNA, Complementary/chemistry , Fructosephosphates/biosynthesis , Humans , Molecular Sequence Data , Proteins/chemistry , RNA, Messenger/analysis , RNA, Messenger/biosynthesis , Recombinant Fusion Proteins/biosynthesis , Recombinant Proteins/biosynthesis , Sequence Homology
SELECTION OF CITATIONS
SEARCH DETAIL