Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters

Therapeutic Methods and Therapies TCIM
Database
Language
Publication year range
1.
J Nutr Biochem ; 21(7): 613-20, 2010 Jul.
Article in English | MEDLINE | ID: mdl-19570671

ABSTRACT

We evaluated the vasorelaxation effects of formononetin, an isoflavone/phytoestrogen found abundantly in Astragalus mongholicus Bunge, on rat isolated aorta and the underlying mechanisms involved. Cumulative administration of formononetin, genistein, daidzein and biochanin A relaxed phenylephrine-preconstricted aorta. Formononetin and biochanin A caused a similar magnitude of relaxation whereas daidzein was least potent. Mechanical removal of endothelium, L-NAME (100 microM) and methylene blue (10 microM) suppressed formononetin-induced relaxation. Formononetin increased endothelial nitric oxide (NO) synthase (eNOS), but not inducible NO synthase, activity with an up-regulation of eNOS mRNA and p-eNOS(Ser1177) protein expression. In endothelium-denuded preparations, formononetin-induced vasorelaxation was significantly reduced by glibenclamide (3 microM) and iberiotoxin (100 nM), and a combination of glibenclamide (3 microM) plus iberiotoxin (100 nM) abolished the relaxation. In contrast, formononetin-elicited endothelium-independent relaxation was not altered by ICI 182,780 (10 microM, an estrogen receptor (ER alpha/ER beta) antagonist) or mifepristone (10 microM, a progesterone receptor antagonist). In single aortic smooth muscle cells, formononetin caused opening of iberiotoxin-sensitive Ca(2+)-activated K(+) (BK(Ca)) channels and glibenclamide-sensitive adenosine triphosphate (ATP)-dependent K(+) (K(ATP)) channels. Thus, our results suggest that formononetin caused vascular relaxation via endothelium/NO-dependent mechanism and endothelium-independent mechanism which involves the activation of BK(Ca) and K(ATP) channels.


Subject(s)
Aorta, Thoracic , Endothelium, Vascular/physiology , Isoflavones/pharmacology , Vasodilation/drug effects , Vasodilator Agents/pharmacology , Animals , Cardiovascular Diseases/drug therapy , Cardiovascular Diseases/prevention & control , Cells, Cultured , Endothelium, Vascular/drug effects , Enzyme Inhibitors/pharmacology , In Vitro Techniques , Male , Muscle, Smooth, Vascular/cytology , Muscle, Smooth, Vascular/drug effects , Muscle, Smooth, Vascular/metabolism , Nitric Oxide Synthase Type II/antagonists & inhibitors , Nitric Oxide Synthase Type II/metabolism , Nitric Oxide Synthase Type III/antagonists & inhibitors , Nitric Oxide Synthase Type III/genetics , Nitric Oxide Synthase Type III/metabolism , Osmolar Concentration , Phytoestrogens/pharmacology , Phytotherapy , RNA, Messenger/metabolism , Rats , Rats, Sprague-Dawley , Up-Regulation/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL