Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters

Database
Country/Region as subject
Language
Affiliation country
Publication year range
1.
J Ethnopharmacol ; 319(Pt 3): 117351, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-37884218

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Ludwigia hyssopifolia (LH), an ethnopharmacological herb used in Guangxi Zhuang medicine, is known for its extensive therapeutic use in treating throat disorders. The anti-laryngeal-cancer benefits of the ethyl acetate and petroleum ether fractions of the ethanolic extracts of LH have been shown in our prior cell-based research. Nevertheless, the specific impacts and underlying processes by which LH combats throat cancer effects have not been fully understood. AIM OF THE STUDY: This study involved the extraction of a composition containing two derivatives of ursolic acid from LH (LH-CUAD). The present study aimed to assess the anti-throat-cancer effects of these derivatives and the underlying mechanisms through in vitro and in vivo experiments. MATERIALS AND METHODS: Solvent extraction, fractionation, chromatography, and semipreparative high-performance liquid chromatography were used for the extraction, purification, and analysis of LH-CUAD. The in vitro and in vivo anti-throat-cancer effects of LH-CUAD were investigated using the throat cancer cell lines Hep-2 and FaDu as well as Hep-2 tumor-bearing nude mice. RESULTS: LH-CUAD significantly inhibited the proliferation and migration of throat cancer cells without any prominent toxicity. The Hoechst 33258 staining, Annexin V-FITC/PI double-staining assays, and flow cytometry confirmed that LH-CUAD could induce throat cancer cell death from early to late apoptosis in vitro. LH-CUAD exhibited significant antitumor activity and low toxicity in a xenograft model, and induced throat cancer cells apoptosis in vivo. The apoptotic effects of LH-CUAD therapy were validated using Western blotting, which demonstrated the activation of a caspase cascade response triggered by an imbalance between the endoplasmic reticulum and mitochondria. In addition, it was observed that LH-CUAD exhibited inhibitory effects on Akt and mTOR phosphorylation, hence promoting apoptosis. CONCLUSIONS: LH-CUAD induces apoptosis in both in vivo and in vitro models of throat cancer. This effect is achieved by activating the mitochondrial pathway, inhibiting the Akt/mTOR pathway and initiating endoplasmic reticulum stress. The findings of this study suggest that LH-CUAD has the potential to offer a novel approach to the clinical management of throat cancer.


Subject(s)
Neoplasms , Pharynx , Animals , Mice , Humans , Proto-Oncogene Proteins c-akt , Mice, Nude , China , Signal Transduction , TOR Serine-Threonine Kinases , Apoptosis , Ursolic Acid
2.
J Ethnopharmacol ; 313: 116475, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37120060

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Mulberry (Morus alba L.) is not only a tasty food but also a beneficial medicinal substance that has been historically used to treat diabetes, as recorded in Tang Ben Cao. Recent research on animal models has shown that the ethyl acetate extract of Morus alba L. fruits (EMF) has hypoglycemic and hypolipidemic properties. However, there is a lack of documentation on the specific mechanisms through which EMF exerts its hypoglycemic effects. OBJECTIVE OF THE STUDY: This study aimed to investigate the impact of EMF on L6 cells and C57/BL6J mice and to elucidate the potential mechanisms underlying its effects. The findings of this study can contribute to the existing evidence for the application of EMF as a therapeutic drug or dietary supplement in the management of type 2 diabetes mellitus (T2DM). MATERIALS AND METHODS: The UPLC-Q-TOF-MS technique was utilized to gather MS data. Masslynx 4.1 software in conjunction with the SciFinder database and other relevant references were used to analyze and identify the chemical composition of EMF. A series of in vitro investigations including MTT assay, glucose uptake assay and Western blot analysis were performed using an L6 cell model stably expressing IRAP-mOrange after EMF treatment. In vivo investigations were performed on a STZ-HFD co-induced T2DM mouse model, which included assessments of body composition, biochemical tests, histopathological analysis, and Western blot analysis. RESULTS: MTT results revealed that EMF had no toxic effects on the cells at various concentrations. When EMF was administered to L6 cells, there was an increase in glucose transporter type 4 (GLUT4) translocation activity and a significant dose-dependent enhancement of glucose uptake by L6 myotubes. EMF treatment led to a marked increase in P-AMPK levels and GLUT4 expression in the cells, but these effects were reversed by an AMPK inhibitor (Compound C). In diabetic mice with STZ-HFD-induced diabetes, EMF treatment improved oral glucose tolerance, hyperglycemia, and hyperinsulinemia. Furthermore, EMF supplementation significantly reduced insulin resistance (IR) in diabetic mice, as evaluated using a steady-state model of the insulin resistance index. Histopathological sections demonstrated that acute EMF treatment reduced hepatic steatosis, pancreatic damage, and adipocyte hypertrophy. Western blot analysis demonstrated that EMF treatment also reduced abnormally high PPARγ expression, elevated the level of p-AMPK and p-ACC, and augmented the abundance of GLUT4 in insulin-sensitive peripheral tissues. SUMMARY: The results suggest that EMF may exert beneficial effects on T2DM through the AMPK/GLUT4 and AMPK/ACC pathways, as well as by regulating PPARγ expression.


Subject(s)
Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Insulin Resistance , Morus , Mice , Animals , Diabetes Mellitus, Type 2/metabolism , Morus/chemistry , AMP-Activated Protein Kinases/metabolism , Blood Glucose , Fruit/metabolism , Diabetes Mellitus, Experimental/metabolism , Mice, Inbred C57BL , PPAR gamma , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use , Insulin
3.
Biomarkers ; 27(8): 784-794, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36083032

ABSTRACT

INTRODUCTION: Adipose tissue fibrosis is a typical feature of adipose tissue dysfunction in obese individuals, which is closely related to metabolic diseases. OBJECTIVE: To explore the effect and mechanism of Saponins from Panax japonicus (SPJ) on adipose tissue fibrosis in obese mice induced by high fat diet (HFD). MATERIALS AND METHODS: We established a HFD induced obese mice model. Then the obese mice were treated with 90 mg/kg SPJ by oral gavage for 10 weeks. The levels of adipose tissue fibrosis and molecules related to signalling pathways were measured. Then the effects of SPJ on TGFß1-induced fibrosis in 3T3-L1 differentiated adipocytes were evaluated. RESULTS: SPJ reduced body weight, fat accumulation, and improved glucose and lipid metabolism in obese mice. SPJ decreased collagen deposition and expressions of fibrotic genes in epididymal white adipose tissue (eWAT) of obese mice. SPJ decreased the levels of TGFß1 protein and pSmad2, and increased the expression of PPARγ and PGC1α, thus alleviating oxidative stress in eWAT. Consistently, SPJ inhibited TGFß1-induced fibrosis in 3T3-L1 differentiated adipocytes. CONCLUSIONS: SPJ may alleviate adipose tissue fibrosis and improve obesity by inhibiting TGFß1/Smad2 and activating PPARγ/PGC1α pathway. SPJ is expected to become an efficient medicine for treatment of obesity.


Subject(s)
Panax , Saponins , Animals , Mice , Adipose Tissue/metabolism , Diet, High-Fat , Fibrosis , Mice, Obese , Obesity , Panax/chemistry , Panax/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/pharmacology , PPAR gamma/metabolism , PPAR gamma/pharmacology , Saponins/pharmacology , Saponins/metabolism
4.
Bioorg Chem ; 129: 106160, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36179442

ABSTRACT

Hyperhimatins A-P (1-16), sixteen new bicyclic polyprenylated acylphloroglucinols (BPAPs), were isolated and identified from Hypericum himalaicum. The planner structures of hyperhimatins A-P were confirmed via extensive NMR and careful HRESIMS data analysis. The absolute configurations of the new compounds were mainly determined by electronic circular dichroism (ECD) calculation, NMR calculation, and the circular dichroism data of the in situ formed [Rh2(OCOCF3)4] complexes. All compounds were assessed for the glucose transporter 4 (GLUT-4) translocation and expression enhancing effects in L6 myotubes. Compounds 1-16 could promote the GLUT-4 expression by the range of 1.95-6.04 folds, and accelerate the GLUT-4 fusion with the plasma membrane ranged from 53.56% to 76.97% at a consistence of 30 µg/mL, among compound 10 displayed the strongest GLUT-4 translocation effect.


Subject(s)
Hypericum , Hypericum/chemistry , Phloroglucinol/pharmacology , Phloroglucinol/chemistry , Magnetic Resonance Spectroscopy , Circular Dichroism , Glucose Transport Proteins, Facilitative , Molecular Structure
5.
BMC Plant Biol ; 21(1): 174, 2021 Apr 10.
Article in English | MEDLINE | ID: mdl-33838642

ABSTRACT

BACKGROUND: Allium sativum (garlic) is an economically important food source and medicinal plant rich in sulfides and other protective substances such as alliin, the precursor of allicin biosynthesis. Cysteine, serine and sulfur is the precursor of alliin biosynthesis. However, little is known about the alliin content under abiotic stress or the mechanism by which it is synthesized. RESULTS: The findings revealed that the content of alliin was lowest in the garlic roots, and highest in the buds. Furthermore, alliin levels decreased in mature leaves following wounding. Transcriptome data generated over time after wounding further revealed significant up-regulation of genes integral to the biosynthetic pathways of cysteine and serine in mature garlic leaves. CONCLUSIONS: The findings suggest that differential expression of cysteine, serine and sulfide-related genes underlies the accumulation of alliin and its precursors in garlic, providing a basis for further analyses of alliin biosynthesis.


Subject(s)
Cysteine/analogs & derivatives , Garlic/genetics , Gene Expression , Plant Leaves/physiology , Cysteine/biosynthesis , Sulfoxides
6.
Clin Nutr ; 37(5): 1462-1473, 2018 10.
Article in English | MEDLINE | ID: mdl-28830700

ABSTRACT

BACKGROUND & AIMS: The effect of maternal omega-3 fatty acids intake on the body composition of the offspring is unclear. The aim of this study was to conduct a systematic review and meta-analysis to confirm the effects of omega-3 fatty acids supplementation during pregnancy and/or lactation on body weight, body length, body mass index (BMI), waist circumference, fat mass and sum of skinfold thicknesses of offspring. METHODS: Human intervention studies were selected by a systematic search of PubMed, Web of Science, the Cochrane Library and references of related reviews and studies. Randomized controlled trials of maternal omega-3 fatty acids intake during pregnancy or lactation for offspring's growth were included. The data were analyzed with RevMan 5.3 and Stata 12.0. Effect sizes were presented as weighted mean differences (WMD) or standardized mean difference (SMD) with 95% confidence intervals (95% CI). RESULTS: Twenty-six studies comprising 10,970 participants were included. Significant increases were found in birth weight (WMD = 42.55 g, 95% CI: 21.25, 63.85) and waist circumference (WMD = 0.35 cm, 95% CI: 0.04, 0.67) in the omega-3 fatty acids group. There were no effects on birth length (WMD = 0.09 cm, 95% CI: -0.03, 0.21), postnatal length (WMD = 0.13 cm, 95% CI: -0.11, 0.36), postnatal weight (WMD = 0.04 kg, 95% CI: -0.07, 0.14), BMI (WMD = 0.09, 95% CI: -0.05, 0.23), the sum of skinfold thicknesses (WMD = 0.45 mm, 95% CI: -0.30, 1.20), fat mass (WMD = 0.05 kg, 95% CI: -0.01, 0.11) and the percentage of body fat (WMD = 0.04%, 95% CI: -0.38, 0.46). CONCLUSIONS: This meta-analysis showed that maternal omega-3 fatty acids supplementation can increase offspring's birth weight and postnatal waist circumference. However, it did not appear to influence children's birth length, postnatal weight/length, BMI, sum of skinfold thicknesses, fat mass and the percentage of body fat during postnatal period. Larger, well-designed studies are recommended to confirm this conclusion.


Subject(s)
Body Composition/physiology , Fatty Acids, Omega-3/pharmacology , Prenatal Nutritional Physiological Phenomena/physiology , Birth Weight , Body Composition/drug effects , Body Height , Body Mass Index , Breast Feeding , Dietary Supplements , Fatty Acids, Omega-3/administration & dosage , Female , Humans , Infant, Newborn , Lactation , Male , Mothers , Pregnancy , Prenatal Nutritional Physiological Phenomena/drug effects , Skinfold Thickness
SELECTION OF CITATIONS
SEARCH DETAIL