Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Therapeutic Methods and Therapies TCIM
Database
Language
Affiliation country
Publication year range
1.
Front Cell Infect Microbiol ; 13: 1327452, 2023.
Article in English | MEDLINE | ID: mdl-38116135

ABSTRACT

The treatment of Pseudomonas aeruginosa infection often involves the combined use of ß-lactam and aminoglycoside antibiotics. In this study, we employed metabolomic analysis to investigate the mechanism responsible for the synergistic activities of meropenem/amikacin combination therapy against multidrug-resistant P. aeruginosa strains harboring OXA-50 and PAO genes. Antibiotic concentrations for meropenem (2 mg/L) monotherapy, amikacin (16 mg/L) monotherapy, and meropenem/amikacin (2/16 mg/L) combination therapy were selected based on clinical breakpoint considerations. Metabolomic analysis revealed significant alterations in relevant metabolites involved in bacterial cell membrane and cell wall synthesis within 15 min of combined drug administration. These alterations encompassed various metabolic pathways, including fatty acid metabolism, peptidoglycan synthesis, and lipopolysaccharide metabolism. Furthermore, at 1 h and 4 h, the combination therapy exhibited significant interference with amino acid metabolism, nucleotide metabolism, and central carbon metabolism pathways, including the tricarboxylic acid cycle and pentose phosphate pathway. In contrast, the substances affected by single drug administration at 1 h and 4 h demonstrated a noticeable reduction. Meropenem/amikacin combination resulted in notable perturbations of metabolic pathways essential for survival of P. aeruginosa, whereas monotherapies had comparatively diminished impacts.


Subject(s)
Amikacin , Pseudomonas Infections , Humans , Meropenem/pharmacology , Meropenem/therapeutic use , Pseudomonas Infections/drug therapy , Pseudomonas Infections/microbiology , Pseudomonas aeruginosa , Anti-Bacterial Agents/therapeutic use , Microbial Sensitivity Tests
2.
Sci Total Environ ; 800: 149488, 2021 Dec 15.
Article in English | MEDLINE | ID: mdl-34392226

ABSTRACT

Efficient oil-water separation, including of emulsified oil separation, is one of the problems restricting the green development of the petrochemical industry. Herein, highly hydrophobic sand was fabricated in one-step, followed by an investigation of adsorption capacity for various oils of hexane, petroleum ether, diesel, tetrachloroethylene and tetrachloromethane. The modified sand (MS) filter bed was subsequently set up to investigate the oil separation efficiency for oil-water mixtures, emulsions and actual petroleum refinery wastewater, respectively. Moreover, the capture process of the oil droplet by the MS was observed by a high-speed camera system, and the oil removal mechanism was explored. The removal feasibility of the oil adhered to the MS in a hydrocyclone was also investigated. The oil could be quickly adsorbed by the MS, and the adsorption capacity was positively correlated with oil density. A high flux of 14,436 L·m-2·h-1 and a considerable separation efficiency of 99% were obtained when the MS was applied for oil-water mixture separation. Additionally, the highest separation efficiency of various emulsions was up to 99.3%. Regrading actual petroleum refinery wastewater, the oil removal efficiency of the MS reached 90% rather than 57.8% of raw sand. The oil droplets in the wastewater were efficiently separated by the MS based on the mechanism of adsorption and coalescence. Additionally, the oil adhered on the MS could be removed, and the oil concentration decreased from 17.6% to 5.2%, which was ascribed to the MS spinning in a hydrocyclone. A novel oil-water separation method of hydrocyclone-intensified filtration by facile and highly hydrophobic sand coating was proposed, and simultaneously the filter media can be effectively regenerated. It is believed that this work might provide a low cost, recyclable and efficient strategy for oil removal, which shows high promise for industrial oily wastewater treatment.


Subject(s)
Petroleum , Sand , Hydrophobic and Hydrophilic Interactions , Oils , Water
SELECTION OF CITATIONS
SEARCH DETAIL