Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Front Psychiatry ; 15: 1358726, 2024.
Article in English | MEDLINE | ID: mdl-38505791

ABSTRACT

Introduction: Some clinical studies have shown that music therapy as an adjunctive therapy can improve overall symptoms in patients with schizophrenia. However, the neural mechanisms of this improvement remain unclear due to insufficient neuroimaging evidence. Methods: In this work, 17 patients with schizophrenia accepted a five-week music therapy (music group) that integrated listening, singing, and composing, and required patients to cooperate in a group to complete music therapy tasks. Meanwhile, 15 patients with schizophrenia received a five-week visual art intervention as the control group including handicraft and painting activities. We collected the Manchester Scale (MS) and Positive and Negative Symptom Scale (PANSS) scores and electroencephalography (EEG) data before and after intervention in two groups. Results: Behavioral results showed that both interventions mentioned above can effectively help patients with schizophrenia relieve their overall symptoms, while a trend-level effect was observed in favor of music therapy. The EEG results indicated that music therapy can improve abnormal neural oscillations in schizophrenia which is reflected by a decrease in theta oscillation in the parietal lobe and an increase in gamma oscillation in the prefrontal lobe. In addition, correlation analysis showed that in the music group, both reductions in theta oscillations in the parietal lobe and increases in gamma oscillations in the prefrontal lobe were positively correlated with the improvement of overall symptoms. Discussion: These findings help us to better understand the neural mechanisms by which music therapy improves overall symptoms in schizophrenia and provide more evidence for the application of music therapy in other psychiatric disorders.

2.
Int J Nanomedicine ; 19: 1097-1108, 2024.
Article in English | MEDLINE | ID: mdl-38327597

ABSTRACT

Introduction: Osteosarcoma is a prevalent and highly malignant primary bone tumor. However, current clinical therapeutic drugs for osteosarcoma are not suitable for long-term use due to significant side effects. Therefore, there is an urgent need to develop new drugs with fewer side effects. Dipsacus asperoides C. Y. Cheng et T. M. Ai, a traditional Chinese medicine, is commonly used for its anti-inflammatory, anti-pain, bone fracture healing, and anti-tumor effects. In this study, we investigated the effects of exosome-like nanoparticles derived from Dipsacus asperoides (DAELNs) on osteosarcoma cells in vitro and in vivo. Methods: DAELNs were isolated and purified from Dipsacus asperoides and their physical and chemical properties were characterized using transmission electron microscopy (TEM) and nanoparticle tracking analysis (NTA). The cellular uptake of DAELNs in osteosarcoma cells was analyzed by PKH26 staining. The proliferation, invasion, migration, and apoptosis of osteosarcoma cells were assessed using CCK8 assay, EdU assay, colony-formation assay, transwell assay, wound healing assay, and mitochondrial membrane potential measurement, respectively. The regulatory mechanism of DAELNs inhibiting the progression of osteosarcoma via activating P38/JNK signaling pathway was investigated using Western blotting and immunohistochemistry. Moreover, the therapeutic effects of DAELNs were evaluated using in vivo small animal imaging assay, HE staining, and immunohistochemistry. Results: Our results showed that DAELNs inhibited the proliferation, invasion, migration, and fostered the apoptosis of osteosarcoma cells in vitro and suppressed the tumor growth of osteosarcoma cells in a xenograft nude mouse model. Furthermore, the bio-distribution of DiD-labeled DAELNs showed preferential targeting of osteosarcoma tumors and excellent biosafety in histological analysis of the liver and kidney. Mechanistically, DAELNs activated the P38/JNK signaling pathway-induced apoptosis. Conclusion: Taken together, DAELNs are novel, natural, and osteosarcoma-targeted agents that can serve as safe and effective therapeutic approaches for the treatment of osteosarcoma.


Subject(s)
Bone Neoplasms , Dipsacaceae , Exosomes , Osteosarcoma , Humans , Mice , Animals , MAP Kinase Signaling System , Dipsacaceae/chemistry , Exosomes/metabolism , Apoptosis , Osteosarcoma/pathology , Cell Line, Tumor , Bone Neoplasms/pathology , Disease Models, Animal , Cell Proliferation , Cell Movement
3.
Biochem Biophys Res Commun ; 505(3): 807-815, 2018 11 02.
Article in English | MEDLINE | ID: mdl-30297107

ABSTRACT

Long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) are implicated in numerous kinds of cardiovascular diseases, and their vital role in regulating cardiac hypertrophy still needs to be explored. In this study, we demonstrated that lncRNA X-inactive specific transcript (XIST) was upregulated in hypertrophic cardiac of mice and phenylephrine (PE)-treated cardiomyocytes. Next, we observed that inhibition of XIST induced hypertrophic response of cardiomyocyte and overexpression of XIST attenuated cardiomyocyte hypertrophy induced by PE. Furthermore, through online predictive tools and functional experiments, we demonstrated that XIST and S100B were targets of miR-330-3p. XIST and miR-330-3p suppressed each other in a reciprocal way in cardiomyocytes. Additionally, XIST promoted S100B expression through harboring the complementary binding sites with miR-330-3p, eventually prevented cardiac hypertrophy. In conclusion, our findings revealed a novel molecular mechanism that XIST/miR-330-3p/S100B pathway modulates the progression of cardiomyocyte hypertrophy.


Subject(s)
Cardiomegaly/pathology , MicroRNAs/antagonists & inhibitors , Myocytes, Cardiac/pathology , RNA, Long Noncoding/physiology , Animals , Disease Progression , Mice , MicroRNAs/metabolism , Phenylephrine/pharmacology , Protective Agents , RNA, Long Noncoding/metabolism , S100 Calcium Binding Protein beta Subunit/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL