Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Therapeutic Methods and Therapies TCIM
Database
Language
Publication year range
1.
J Infect Dis ; 212(4): 635-44, 2015 Aug 15.
Article in English | MEDLINE | ID: mdl-25612733

ABSTRACT

Vitamin D level is linked to susceptibility to infections, but its relevance in candidemia is unknown. We aimed to investigate the in vivo sequelae of vitamin D3 supplementation in systemic Candida infection. Implicating the role of vitamin D in Candida infections, we showed that candidemic patients had significantly lower 25-OHD concentrations. Candida-infected mice treated with low-dose 1,25(OH)2D3 had reduced fungal burden and better survival relative to untreated mice. Conversely, higher 1,25(OH)2D3 doses led to poor outcomes. Mechanistically, low-dose 1,25(OH)2D3 induced proinflammatory immune responses. This was mediated through suppression of SOCS3 and induction of vitamin D receptor binding with the vitamin D-response elements in the promoter of the gene encoding interferon γ. These beneficial effects were negated with higher vitamin D3 doses. While the antiinflammatory effects of vitamin D3 are well described, we found that, conversely, lower doses conferred proinflammatory benefits in Candida infection. Our study highlights caution against extreme deviations of vitamin D levels during infections.


Subject(s)
Candidiasis/drug therapy , Cholecalciferol/pharmacology , Vitamin D/blood , Animals , Candidiasis/immunology , Cholecalciferol/administration & dosage , Cohort Studies , Dose-Response Relationship, Drug , Gene Expression Regulation/drug effects , Humans , Inflammation/immunology , Inflammation/metabolism , Interferon-gamma/metabolism , Leukocytes, Mononuclear , Mice , Mice, Inbred BALB C , Promoter Regions, Genetic , RNA, Messenger/genetics , RNA, Messenger/metabolism , STAT Transcription Factors/genetics , STAT Transcription Factors/metabolism , Suppressor of Cytokine Signaling 3 Protein , Suppressor of Cytokine Signaling Proteins/genetics , Suppressor of Cytokine Signaling Proteins/metabolism
2.
Sci Transl Med ; 6(263): 263ra159, 2014 Nov 19.
Article in English | MEDLINE | ID: mdl-25411472

ABSTRACT

The global burden of tuberculosis (TB) morbidity and mortality remains immense. A potential new approach to TB therapy is to augment protective host immune responses. We report that the antidiabetic drug metformin (MET) reduces the intracellular growth of Mycobacterium tuberculosis (Mtb) in an AMPK (adenosine monophosphate-activated protein kinase)-dependent manner. MET controls the growth of drug-resistant Mtb strains, increases production of mitochondrial reactive oxygen species, and facilitates phagosome-lysosome fusion. In Mtb-infected mice, use of MET ameliorated lung pathology, reduced chronic inflammation, and enhanced the specific immune response and the efficacy of conventional TB drugs. Moreover, in two separate human cohorts, MET treatment was associated with improved control of Mtb infection and decreased disease severity. Collectively, these data indicate that MET is a promising candidate host-adjunctive therapy for improving the effective treatment of TB.


Subject(s)
Metformin/therapeutic use , Mycobacterium tuberculosis/drug effects , Tuberculosis/drug therapy , Humans , Metformin/pharmacology , Microbial Sensitivity Tests , Mycobacterium tuberculosis/growth & development , Reactive Oxygen Species/metabolism , Tuberculosis/immunology
SELECTION OF CITATIONS
SEARCH DETAIL