Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Phytomedicine ; 128: 155376, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38503152

ABSTRACT

BACKGROUND: The apoptosis of pulmonary artery endothelial cells (PAECs) is an important factor contributing to the development of pulmonary hypertension (PH), a serious cardio-pulmonary vascular disorder. Salidroside (SAL) is a bioactive compound derived from an herb Rhodiola, but the potential protective effects of SAL on PAECs and the underlying mechanisms remain elusive. PURPOSE: The objective of this study was to determine the role of SAL in the hypoxia-induced apoptosis of PAECs and to dissect the underlying mechanisms. STUDY DESIGN: Male Sprague-Dawley (SD) rats were subjected to hypoxia (10% O2) for 4 weeks to establish a model of PH. Rats were intraperitoneally injected daily with SAL (2, 8, and 32 mg/kg/d) or vehicle. To define the molecular mechanisms of SAL in PAECs, an in vitro model of hypoxic cell injury was also generated by exposed PAECs to 1% O2 for 48 h. METHODS: Various techniques including hematoxylin and eosin (HE) staining, immunofluorescence, flow cytometry, CCK-8, Western blot, qPCR, molecular docking, and surface plasmon resonance (SPR) were used to determine the role of SAL in rats and in PAECs in vitro. RESULTS: Hypoxia stimulation increases AhR nuclear translocation and activates the NF-κB signaling pathway, as evidenced by upregulated expression of CYP1A1, CYP1B1, IL-1ß, and IL-6, resulting in oxidative stress and inflammatory response and ultimately apoptosis of PAECs. SAL inhibited the activation of AhR and NF-κB, while promoted the nuclear translocation of Nrf2 and increased the expression of its downstream antioxidant proteins HO-1 and NQO1 in PAECs, ameliorating the hypoxia-induced oxidative stress in PAECs. Furthermore, SAL lowered right ventricular systolic pressure, and decreased pulmonary vascular remodeling and right ventricular hypertrophy in hypoxia-exposed rats. CONCLUSIONS: SAL may attenuate the apoptosis of PAECs by suppressing NF-κB and activating Nrf2/HO-1 pathways, thereby delaying the progressive pathology of PH.


Subject(s)
Apoptosis , Endothelial Cells , Heme Oxygenase (Decyclizing) , Pulmonary Artery , Signal Transduction , Animals , Male , Rats , Apoptosis/drug effects , Endothelial Cells/drug effects , Glucosides/pharmacology , Hypertension, Pulmonary/drug therapy , Hypoxia/drug therapy , NF-E2-Related Factor 2/metabolism , NF-kappa B/metabolism , Oxidative Stress/drug effects , Phenols/pharmacology , Pulmonary Artery/drug effects , Rats, Sprague-Dawley , Receptors, Aryl Hydrocarbon/metabolism , Rhodiola/chemistry , Signal Transduction/drug effects
2.
Phytomedicine ; 63: 153011, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31301538

ABSTRACT

BACKGROUND: Ilexgenin A (IA), the main bioactive compound from Ilex hainanensis Merr., has significant hypolipidemic activities. However, the effects of IA on colitis-associated colorectal cancer (CRC) and its mechanisms are still unknown. PURPOSE: The study was designed to evaluate the effect of IA on CRC and explore its underlying mechanisms. STUDY DESIGN: The effect of IA on colitis related CRC were evaluated in azoxymethane (AOM)/dextran sulfate sodium (DSS) mice and the underlying mechanisms were revealed by metabolomics, which were further validated in vivo and in vitro. METHODS: The Balb/c mice were treated with AOM/DSS to induce CRC model and fed with normal diet with or without 0.02% IA. After the experimental period, samples of plasma were collected and analyzed by ultra-high-performance liquid chromatography/quadrupole time off light mass spectrometry (UHPLC-Q-TOF). Multivariate statistical tools were used to identify the changes of serum metabolites associated with CRC and responses to IA treatment. HT 29 and HCT 116 cells were stimulated by palmitate (PA) and cultured under hypoxia. Western blot, Q-PCR, and Immunofluorescence staining were performed to confirm the molecular pathway in vivo and in vitro. RESULTS: Our results showed IA significantly inhibited the inflammatory colitis symptoms such as disease activity index score, shortening of colon tissues and the increase of inflammatory cytokines. In metabolomic study, 31 potential metabolites associated with CRC were identified and 24 of them were reversed by IA treatment. Most of biomarkers were associated with arachidonic acid metabolism, glycerophospholipid catabolism, and phospholipid metabolism, suggesting lipid metabolism might be involved in the beneficial effect of IA on CRC. Furthermore, we also found IA could decrease the expressions of SREBP-1 and its target gene in the colon tissues of AOM/DSS mice. It could down-regulate the triglyceride (TG) content and the expressions of HIF1α, SREBP-1, FASN, and ACC in HT 29 and HCT 116 cells. The inhibitory effect of IA on SREBP-1 was also attenuated by desferrioxamine (DFX), suggesting HIF1α is involved in the regulation of IA on SREBP-1. CONCLUSION: IA prevents early colonic carcinogenesis in AOM/DSS mice and reprogramed lipid metabolism partly through HIF1α/SREBP-1.


Subject(s)
Colorectal Neoplasms/prevention & control , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Lipid Metabolism/drug effects , Sterol Regulatory Element Binding Protein 1/metabolism , Triterpenes/pharmacology , Animals , Anticarcinogenic Agents/pharmacology , Azoxymethane/toxicity , Colitis/chemically induced , Colitis/complications , Colorectal Neoplasms/etiology , Colorectal Neoplasms/pathology , Dextran Sulfate/toxicity , HCT116 Cells , HT29 Cells , Humans , Male , Mice, Inbred BALB C , Tumor Necrosis Factor-alpha/genetics , beta Catenin/genetics
3.
Phytother Res ; 31(1): 100-107, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27714922

ABSTRACT

Adipose tissue inflammation and macrophage polarization are tightly associated with the development of obesity-associated insulin resistance. Our previous studies have demonstrated the triterpenoids-enriched extract from the aerial parts of Salvia miltiorrhiza (TTE) could significantly improve atherosclerosis in LDLR-/- mice. However, its molecular mechanisms of TTE ameliorating insulin resistance remain unclear. In the present study, obesity model with insulin resistance induced by feeding high-fat diet (HFD) was established. Dietary TTE attenuated hyperlipidemia, improved glucose intolerance in mice and mediated the activation of IRS-1/PI3K/Akt insulin signaling pathway. Meanwhile, dietary TTE also attenuated macrophage infiltrations into adipose tissue and modified the phenotype ratio of M1/M2 macrophages. Furthermore, our results showed that TTE regulated the polarization of macrophages partly via adenosine monophosphate-activated kinase (AMPK). Taken together, these findings suggested that TTE has a potential clinical utility in improving insulin resistance. Its mechanisms might be contributed to its beneficial effects on macrophage polarization via AMPK. Copyright © 2016 John Wiley & Sons, Ltd.


Subject(s)
Adipose Tissue/drug effects , Macrophages/drug effects , Salvia miltiorrhiza/chemistry , Triterpenes/chemistry , Animals , Diet, High-Fat , Inflammation/metabolism , Insulin Resistance , Male , Mice , Mice, Inbred C57BL , Triterpenes/pharmacology
4.
Pharmacol Res ; 99: 101-15, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26054569

ABSTRACT

Ilexgenin A is a natural triterpenoid with beneficial effects on lipid disorders. This study aimed to investigate the effects of ilexgenin A on endothelial homeostasis and its mechanisms. Palmitate (PA) stimulation induced endoplasmic reticulum stress (ER stress) and subsequent thioredoxin-interacting protein (TXNIP)/NLRP3 inflammasome activation in endothelial cells, leading to endothelial dysfunction. Ilexgenin A enhanced LKB1-dependent AMPK activity and improved ER stress by suppression of ROS-associated TXNIP induction. However, these effects were blocked by knockdown of AMPKα, indicating AMPK is essential for its action in suppression of ER stress. Meanwhile, ilexgenin A inhibited NLRP3 inflammasome activation by down-regulation of NLRP3 and cleaved caspase-1 induction, and thereby reduced IL-1ß secretion. It also inhibited inflammation and apoptosis exposed to PA insult. Consistent with these results in endothelial cells, ilexgenin A attenuated ER stress and restored the loss of eNOS activity in vascular endothelium, and thereby improved endothelium-dependent vasodilation in rat aorta. A further analysis in high-fat fed mice showed that oral administration of ilexgenin A blocked ER stress/NLRP3 activation with reduced ROS generation and increased NO production in vascular endothelium, well confirming the beneficial effect of ilexgenin A on endothelial homeostasis in vivo. Taken together, these results show ER stress-associated TXNIP/NLRP3 inflammasome activation was responsible for endothelial dysfunction and ilexgenin A ameliorated endothelial dysfunction by suppressing ER-stress and TXNIP/NLRP3 inflammasome activation with a regulation of AMPK. This finding suggests that the application of ilexgenin A is useful in the management of cardiovascular diseases in obesity.


Subject(s)
Endoplasmic Reticulum Stress/drug effects , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Triterpenes/pharmacology , AMP-Activated Protein Kinases/deficiency , AMP-Activated Protein Kinases/genetics , AMP-Activated Protein Kinases/metabolism , Animals , Aorta, Thoracic/drug effects , Aorta, Thoracic/metabolism , Apoptosis/drug effects , Cardiovascular Diseases/drug therapy , Cardiovascular Diseases/metabolism , Carrier Proteins/metabolism , Caspase 3/metabolism , Cell Line , Drugs, Chinese Herbal/pharmacology , Endothelial Cells/cytology , Gene Knockdown Techniques , Humans , Ilex , Inflammasomes/drug effects , Inflammasomes/metabolism , Lipid Metabolism/drug effects , Male , Mice , Mice, Inbred ICR , Mitochondria/drug effects , Mitochondria/metabolism , Rats , Rats, Sprague-Dawley , Reactive Oxygen Species/metabolism , Thioredoxins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL