Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Hong Kong J Occup Ther ; 36(1): 31-38, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37332295

ABSTRACT

Background: To investigate the physical and psychological effects of five-element music therapy combined with Baduanjin qigong treatment on inpatients with mild coronavirus disease 2019 (COVID-19) in Wuhan. Methods: A mixed-methods study was used. In the quantitative study, a randomized controlled trial was performed on 40 study participants divided into a control group (n = 20) and an intervention group (n = 20). The Self-rating Anxiety Scale, Self-rating Depression Scale and Pittsburgh Sleep Quality Index were compared. For qualitative analysis, it adopted purposive sampling method, 13 patients of different ages from 18 to 60 years old and different exercise behavior were selected as the participants from the intervention group. A semi-structured interview method was used to collect data, and the content analysis method was used for data analysis. An interview outline was developed to assess the psychological condition and personal functional-exercise behavior of patients. Results: In the quantitative study, the anxiety self-scores and depression self-scores of patients in intervention group were significantly lower compared with control group after treatment (p < .05). The sleep quality of intervention group was significantly improved compared with control group (p < .001). Participants in the qualitative study responded to questions posed through semi-structured interviews. The effect of intervention was good, which has been supported and recognized by patients. Conclusion: The treatment of five-element music therapy combined with Baduanjin qigong on patients with mild COVID-19 alleviated anxiety and depression, and improved sleep quality, which was beneficial to the patients' physical and psychological recovery.

2.
J Nutr Biochem ; 101: 108943, 2022 03.
Article in English | MEDLINE | ID: mdl-35017003

ABSTRACT

Obesity and associated comorbidities are closely linked to gut microbiota dysbiosis, energy balance, and chronic inflammation. Tangeretin, a key citrus polymethoxylated flavone (PMF), is abundant in citrus fruits and has preventative and therapeutic effects for numerous diseases. The current study investigated the effects and possible mechanisms of tangeretin supplementation in preventing obesity in high-fat diet (HFD)-fed mice. Treatment of HFD-fed mice with tangeretin potently ameliorated HFD-induced body weight, liver steatosis, glucose intolerance, and insulin resistance. Tangeretin mitigated systemic chronic inflammation by reducing metabolic endotoxemia and inflammation-related gene expression in HFD-fed mice. An increased number of small brown adipocytes possessing multilocular and cytoplasmic lipid droplets and upregulation of thermogenic gene expression were observed after tangeretin treatment. 16S rRNA amplicon sequencing indicated that tangeretin markedly altered the gut microbiota composition (richness and diversity) and reversed 16 operational taxonomic units (OTUs) back to levels seen in mice consuming a normal chow diet (NCD). Notably, tangeretin decreased the ratio of Firmicutes-to-Bacteroidetes and greatly enriched Bacteroides and Lactobacillus. Overall, our results suggest that long-term supplementation with citrus tangeretin ameliorates the phenotype of obesity by improving adipose thermogenesis and reducing systemic inflammation and gut microbiota dysbiosis, which provides a good basis for studying the mechanism of tangeretin's beneficial effects.


Subject(s)
Adipose Tissue, Brown/physiology , Dietary Supplements , Flavones/administration & dosage , Gastrointestinal Microbiome , Inflammation/diet therapy , Obesity/prevention & control , Adipocytes, White/physiology , Animals , Bacteria/classification , Bacteria/growth & development , Bacteria/isolation & purification , Diet, High-Fat , Fatty Liver/diet therapy , Glucose Intolerance , Insulin Resistance , Male , Mice , Mice, Inbred C57BL , Thermogenesis
3.
3 Biotech ; 12(1): 38, 2022 Jan.
Article in English | MEDLINE | ID: mdl-35070628

ABSTRACT

Iron (Fe) deficiency chlorosis (IDC) is a major nutritional disorder in fruit trees grown on calcareous soils. As a peach rootstock, 'GF677' (Prunus dulcis Miller × P. persica (L.) Batsch) has great tolerance to Fe deficiency, but the molecular mechanisms of 'GF677' that support the process of iron deficiency chlorosis tolerance are still unknown. In this study, the key factors for differential iron deficiency chlorosis tolerance in two contrasting rootstocks (IDC-tolerant: 'GF677', IDC-susceptible: 'Maotao' (P. persica)) were investigated. 'GF677' exhibited greater Fe transfer and accumulation capacities when compared with 'Maotao', and the analysis of photosynthetic pigments, related precursors, and antioxidative enzyme activities further demonstrated that 'GF677' was more tolerant to IDC when compared with 'Maotao'. Furthermore, comparative transcriptome analysis revealed differential expression in many genes involved in iron transport and storage, and in photosynthesis recovery. These results suggest that the greater IDC tolerance of 'GF677' can be attributed to the greater expression of key genes related to specific Fe transporters, defense systems, photosynthetic recovery, and/or special proteins. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s13205-021-03046-6.

4.
Eur J Pharmacol ; 906: 174094, 2021 Sep 05.
Article in English | MEDLINE | ID: mdl-34087222

ABSTRACT

Although the protective effects of tangeretin on neuroinflammation have been proven in cell and animal experiments, few studies explore its underlying molecular mechanism. In this study, we used the network pharmacology method combined with the transcriptome approach to investigate its underlying anti-inflammatory mechanism in human microglial cells. Based on network pharmacology analysis, four putative target proteins and ten potential pathways were identified. Among them, vascular endothelial growth factor A (VEGFA), epidermal growth factor receptor (EGFR) and the related phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT), the mitogen-activated protein kinase (MAPK), mechanistic target of rapamycin (mTOR) signaling pathway were well-supported by transcriptome data. Meanwhile, transcriptome analysis supplemented two crucial targets: the insulin receptor (InsR) and insulin-like growth factor-I (IGF-1) receptor. Subsequently, VEGFA, EGFR, IGF-1 receptor, and InsR were further verified on the protein level. Taken together, we assumed that tangeretin could exert protective effects on neuroinflammation by decreasing the expression of VEGFA, EGFR, InsR, and IGF-1 receptor in the PI3K-AKT, MAPK, mTOR signaling pathway. More importantly, it is for the first time to show that the anti-neuroinflammatory effects of tangeretin through VEGFA, EGFR, IGF-1 receptor, InsR, and mTOR signaling pathway. These works offer new insight into the anti-neuroinflammatory functions of tangeretin and propose novel information on further anti-inflammatory mechanism studies.


Subject(s)
Flavones/pharmacology , Neuroinflammatory Diseases/drug therapy , Plant Extracts/pharmacology , Protein Interaction Maps/drug effects , Flavones/therapeutic use , Gene Expression Profiling , Humans , Network Pharmacology , Neuroinflammatory Diseases/genetics , Plant Extracts/therapeutic use , Protein Interaction Maps/genetics , Signal Transduction/genetics
SELECTION OF CITATIONS
SEARCH DETAIL