Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 52
Filter
1.
Food Chem ; 428: 136798, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37423106

ABSTRACT

Pesticide residue detection in food has become increasingly important. Herein, surface-enhanced Raman scattering (SERS) coupled with an intelligent algorithm was developed for the rapid and sensitive detection of pesticide residues in tea. By employing octahedral Cu2O templates, Au-Ag octahedral hollow cages (Au-Ag OHCs) were developed, which improved the surface plasma effect via rough edges and hollow inner structure, amplifying the Raman signals of pesticide molecules. Afterward, convolutional neural network (CNN), partial least squares (PLS), and extreme learning machine (ELM) algorithms were applied for the quantitative prediction of thiram and pymetrozine. CNN algorithms performed optimally for thiram and pymetrozine, with correlation values of 0.995 and 0.977 and detection limits (LOD) of 0.286 and 29 ppb, respectively. Accordingly, no significant difference (P greater than 0.05) was observed between the developed approach and HPLC in detecting tea samples. Hence, the proposed Au-Ag OHCs-based SERS technique could be utilized for quantifying thiram and pymetrozine in tea.


Subject(s)
Deep Learning , Metal Nanoparticles , Pesticide Residues , Thiram/analysis , Pesticide Residues/analysis , Spectrum Analysis, Raman/methods , Algorithms , Neural Networks, Computer , Tea , Metal Nanoparticles/chemistry , Gold/chemistry
2.
J Sci Food Agric ; 103(15): 7914-7920, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37490702

ABSTRACT

BACKGROUND: The objective of the current study was to compare two machine learning approaches for the quantification of total polyphenols by choosing the optimal spectral intervals utilizing the synergy interval partial least squares (Si-PLS) model. To increase the resilience of built models, the genetic algorithm (GA) and competitive adaptive reweighted sampling (CARS) were applied to a subset of variables. RESULTS: The collected spectral data were divided into 19 sub-interval selections totaling 246 variables, yielding the lowest root mean square error of cross-validation (RMSECV). The performance of the model was evaluated using the correlation coefficient for calibration (RC ), prediction (RP ), RMSECV, root mean square error of prediction (RMSEP) and residual predictive deviation (RPD) value. The Si-GA-PLS model produced the following results: PCs = 9; RC = 0.915; RMSECV = 1.39; RP = 0.8878; RMSEP = 1.62; and RPD = 2.32. The performance of the Si-CARS-PLS model was noted to be best at PCs = 10, while RC = 0.9723, RMSECV = 0.81, RP = 0.9114, RMSEP = 1.45 and RPD = 2.59. CONCLUSION: The build model's prediction ability was amended in the order PLS < Si-PLS < CARS-PLS when full spectroscopic data were used and Si-PLS < Si-GA-PLS < Si-CARS-PLS when interval selection was performed with the Si-PLS model. Finally, the developed method was successfully used to quantify total polyphenols in tea. © 2023 Society of Chemical Industry.


Subject(s)
Camellia sinensis , Polyphenols , Polyphenols/analysis , Tea/chemistry , Spectroscopy, Near-Infrared/methods , Algorithms , Least-Squares Analysis
3.
Talanta ; 263: 124622, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37267888

ABSTRACT

Aroma affects the quality of black tea, and the rapid evaluation of aroma quality is the key to realize the intelligent processing of black tea. A simple colorimetric sensor array coupled with a hyperspectral system was proposed for the rapid quantitative detection of key volatile organic compounds (VOCs) in black tea. Feature variables were screened based on competitive adaptive reweighted sampling (CARS). Furthermore, the performance of the models for VOCs quantitative prediction was compared. For the quantitative prediction of linalool, benzeneacetaldehyde, hexanal, methyl salicylate, and geraniol, the CARS-least-squares support vector machine model's correlation coefficients were 0.89, 0.95, 0.88, 0.80, and 0.78, respectively. The interaction mechanism of array dyes with VOCs was based on density flooding theory. The optimized highest occupied molecular orbital levels, lowest unoccupied molecular orbital energy levels, dipole moments, and intermolecular distances were determined to be strongly correlated with interactions between array dyes and VOCs.


Subject(s)
Camellia sinensis , Volatile Organic Compounds , Tea/chemistry , Odorants/analysis , Colorimetry , Camellia sinensis/chemistry , Volatile Organic Compounds/analysis , Spectrum Analysis , Coloring Agents
4.
Food Chem ; 423: 136208, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37163914

ABSTRACT

Kombucha is widely recognized for its health benefits, and it facilitates high-quality transformation and utilization of tea during the fermentation process. Implementing on-line monitoring for the kombucha production process is crucial to promote the valuable utilization of low-quality tea residue. Near-infrared (NIR) spectroscopy, together with partial least squares (PLS), backpropagation neural network (BPANN), and their combination (PLS-BPANN), were utilized in this study to monitor the total sugar of kombucha. In all, 16 mathematical models were constructed and assessed. The results demonstrate that the PLS-BPANN model is superior to all others, with a determination coefficient (R2p) of 0.9437 and a root mean square error of prediction (RMSEP) of 0.8600 g/L and a good verification effect. The results suggest that NIR coupled with PLS-BPANN can be used as a non-destructive and on-line technique to monitor total sugar changes.


Subject(s)
Kombucha Tea , Online Systems , Nonlinear Dynamics , Kombucha Tea/analysis , Sugars/chemistry , Sugars/metabolism , Fermentation , Spectroscopy, Near-Infrared , Calibration , Linear Models
5.
Food Chem ; 414: 135705, 2023 Jul 15.
Article in English | MEDLINE | ID: mdl-36808025

ABSTRACT

Surface-enhanced Raman spectroscopy (SERS) and deep learning models were adopted for detecting zearalenone (ZEN) in corn oil. First, gold nanorods were synthesized as a SERS substrate. Second, the collected SERS spectra were augmented to improve the generalization ability of regression models. Third, five regression models, including partial least squares regression (PLSR), random forest regression (RFR), Gaussian progress regression (GPR), one-dimensional convolutional neural networks (1D CNN), and two-dimensional convolutional neural networks (2D CNN), were developed. The results showed that 1D CNN and 2D CNN models possessed the best prediction performance, i.e., determination of prediction set (RP2) = 0.9863 and 0.9872, root mean squared error of prediction set (RMSEP) = 0.2267 and 0.2341, ratio of performance to deviation (RPD) = 6.548 and 6.827, limit of detection (LOD) = 6.81 × 10-4 and 7.24 × 10-4 µg/mL. Therefore, the proposed method offers an ultrasensitive and effective strategy for detecting ZEN in corn oil.


Subject(s)
Deep Learning , Zearalenone , Spectrum Analysis, Raman/methods , Corn Oil , Neural Networks, Computer
6.
Ultrason Sonochem ; 94: 106339, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36842214

ABSTRACT

The current work combines headspace solid phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC/MS) with multivariate analysis fusion metabonomics for examining metabolite profile changes. The correlation with metabolic pathways during the fermentation of kombucha tea were comprehensively explored. For optimizing the fermentation process, ultrasound-assisted factors were explored. A total of 132 metabolites released by fermented kombucha were detected by HS-SPME-GC/MS. We employed the principal component analysis (PCA) and partial least squares-discriminant analysis (PLS-DA) to present the relationship between aroma components and fermentation time, of which the first two principal components respectively accounted for 60.3% and 6.5% of the total variance. Multivariate statistical analysis showed that during the fermentation of kombucha tea, there were significant differences in the phenotypes of metabolites in the samples, and 25 characteristic metabolites were selected as biomarkers. Leaf alcohol was first proposed as the characteristic volatile in the fermentation process of kombucha. Furthermore, we addressed the generation pathways of characteristic volatiles, their formation mechanisms, and the transformational correlation among them. Our findings provide a roadmap for future kombucha fermentation processing to enhance kombucha flavor and aroma.


Subject(s)
Kombucha Tea , Volatile Organic Compounds , Gas Chromatography-Mass Spectrometry/methods , Solid Phase Microextraction/methods , Fermentation , Kombucha Tea/analysis , Odorants/analysis , Metabolomics , Ethanol/analysis , Metabolic Networks and Pathways , Volatile Organic Compounds/analysis
7.
Ultrason Sonochem ; 88: 106095, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35850035

ABSTRACT

The current innovative work combines nano-optical sensors with near-infrared spectroscopy for rapid detection and quantification of polyphenols and investigates the potential of the nano-optical sensor based on chemo-selective colorants to detect the dynamic changes in aroma components during the fermentation of tea extract. The procedure examined the influence of different ultrasound-assisted sonication factors on the changes in the consumption rate of polyphenols during the fermentation of tea extract versus non-sonication as a control group. The results showed that the polyphenol consumption rate improved under the ultrasound conditions of 28 kHz ultrasound frequency, 24 min treatment time, and 40 W/L ultrasonic power density. The metal-organic framework based nano-optical sensors reported here have more adsorption sites for enhanced adsorption of the volatile organic compounds. The polystyrene-acrylic microstructure offered specific surface area for the reactants. Besides, the employed porous silica nanospheres with higher porosity administered improved gas enrichment effect. The nano-optical sensor exhibits good performance with a "chromatogram" for the identification of aroma components in the fermentation process of tea extract. The proposed method respectively enhanced the consumption rate of polyphenol by 35.57%, 11.34% and 16.09% under the optimized conditions. Based on the established polyphenol quantitative prediction models, this work demonstrated the feasibility of using a nano-optical sensor to perform in-situ imaging of the fermentation degree of tea extracts subjected to ultrasonic treatment.


Subject(s)
Odorants , Polyphenols , Fermentation , Plant Extracts , Polyphenols/analysis , Spectroscopy, Near-Infrared/methods , Tea/chemistry
8.
Food Chem ; 388: 132973, 2022 Sep 15.
Article in English | MEDLINE | ID: mdl-35447589

ABSTRACT

Edible crude palm oil (CPO) is a vital oil utilized in various industries, including food, pharmaceuticals, and domestic cooking. Unfortunately, reports of CPO adulteration with harmful Sudan dyes have surfaced over the years. Surface-enhanced Raman spectroscopy (SERS) and chemometrics were employed to detect Sudan dyes adulteration in CPO within 900 - 1800 cm- 1 Raman peak. The concentration of Sudan dyes detected in CPO samples ranged between 0.005 and 4 ppm. The principal component analysis (PCA) model detected Sudan II and Sudan IV in CPO with 99.88 and 99.90% accuracy. Linear discriminant analysis (LDA) and K-Nearest Neighbors (KNN) also recorded high detection rates of Sudan II and IV dyes in CPO. Sudan II and IV dyes could be detected at 0.0028 ppm and 0.0019 ppm by this sensor. The performance of the Au@Ag SERS sensor was comparable to that of HPLC. This study proved SERS and chemometrics can be used to authenticate edible CPO.


Subject(s)
Petroleum , Chemometrics , Coloring Agents/analysis , Fraud , Palm Oil/chemistry , Petroleum/analysis , Spectrum Analysis, Raman
9.
Food Chem ; 385: 132710, 2022 Aug 15.
Article in English | MEDLINE | ID: mdl-35313194

ABSTRACT

The peroxide value (PV) is an important indicator to assess quality of edible oils. However, traditional methods for determining PV are complicated for operating and lack sensitivity. In this paper, we report a fast, reusable, selective and sensitive room-temperature phosphorescence (RTP)-based sensor to determine the PV of edible oils. The sensor comprises a lead-based metal-organic framework (Pb-MOF, Pb4O(TPA)3, TPA: (terephthalic acid). Luminescence studies reveal that bright RTP of Pb-MOF quenched significantly by iodide ions (I-), a classic reductant for peroxides in edible oils, thus the determination of the PV is possible. Crucially, the proposed method yields responses within 10 min and has a wide linear range of 0.35-25.62 mmol/kg, a low detection limit of 30 µmol/kg, and high selectivity for PV detection. The sensing system was successfully applied to determine the PVs of edible oils and monitor the PV of rapeseed oil during storage.


Subject(s)
Metal-Organic Frameworks , Peroxides , Lead , Plant Oils , Temperature
10.
Food Chem ; 377: 131974, 2022 May 30.
Article in English | MEDLINE | ID: mdl-34979395

ABSTRACT

Rapid monitoring of fermentation quality has been the key to realizing the intelligent processing of black tea. In our study, mixing ratios, sensing array components and reaction times were optimized before an optimal solution phase colorimetric sensor array was constructed. The characteristic spectral information of the array was obtained by UV-visible spectroscopy and subsequently combined with machine learning algorithms to construct a black tea fermentation quality evaluation model. The competitive adaptive reweighting algorithms (CARS)-support vector machine model discriminated the black tea fermentation degree with 100% accuracy. For quantification of catechins and four theaflavins (TF, TFDG, TF-3-G, and TF-3'-G), the correlation coefficients of the CARS least square support vector machine model prediction set were 0.91, 0.86, 0.76, 0.72 and 0.79, respectively. The results obtained within 2 min enabled accurate monitoring of the fermentation quality of black tea, which provides a new method and idea for intelligent black tea processing.


Subject(s)
Camellia sinensis , Catechin , Catechin/analysis , Fermentation , Spectrophotometry, Ultraviolet , Spectroscopy, Near-Infrared , Tea
11.
Spectrochim Acta A Mol Biomol Spectrosc ; 267(Pt 2): 120624, 2022 Feb 15.
Article in English | MEDLINE | ID: mdl-34824004

ABSTRACT

Two key parameters (acidity and peroxide content) for evaluation of the oxidation level in crude peanut oil have been studied. The titrimetric analysis was carried out for reference data collection. Then, near-infrared spectroscopy in combination with chemometric algorithms such as partial least square (PLS); bootstrapping soft shrinkage-PLS (BOSS-PLS); uninformative variable elimination-PLS (UVE-PLS), and competitive-adaptive reweighted sampling-PLS (CARS-PLS) were attempted and assessed. The correlation coefficients of prediction (Rp), root mean square error of prediction (RMSEP) and residual predictive deviation (RPD) were used to individually evaluate the performance of the models. Optimum results were noticed with CARS-PLS, 0.9517 ≤ Rc ≤ 0.9670, 0.9503 ≤ Rp ≤ 0.9637, 0.0874 ≤ RMSEP ≤ 0.5650, and 3.14 ≤ RPD ≤ 3.64. Therefore, this affirmed that the near-infrared spectroscopy coupled with CARS-PLS could be used as a simple, fast, and non-invasive technique for quantifying acid value and peroxide value in crude peanut oil.


Subject(s)
Petroleum , Spectroscopy, Near-Infrared , Algorithms , Arachis , Least-Squares Analysis , Multivariate Analysis , Peanut Oil , Peroxides
12.
Anal Methods ; 13(13): 1625-1634, 2021 04 07.
Article in English | MEDLINE | ID: mdl-33735352

ABSTRACT

Perchlorate is a new type of persistent pollutant, which interferes with the synthesis and secretion of thyroxine and affects human health. The EU's limit for perchlorate in tea is 750 µg kg-1. The surface-enhanced Raman scattering (SERS) technique has the characteristics of a simple pretreatment method, rapid detection, high sensitivity, high specificity and great stability in the detection of perchlorate. This study proposed a novel superhydrophobic SERS substrate, which can be used to detect perchlorate in tea. Firstly, a chemical deposition method was used to deposit a silver film on the surface of a thin layer of polydimethylsiloxane. After drying, the substrate was immersed in 1H,1H,2H,2H-perfluorodecyltriethoxysilane aqueous solution for 15 hours to make the surface of the substrate superhydrophobic. Then cysteine molecules were deposited on the surface of the silver film/polydimethylsiloxane by incubation. The superhydrophobic surface has a unique enrichment effect on the highly diluted solution, and perchlorate has a strong affinity for the amino group of cysteine. We collected the Raman spectra of 9 gradient concentrations (1-100 µmol L-1) of perchlorate-spiked tea samples on the hydrophobic substrate, and a linear model of the relationship between the SERS spectral intensity and the concentrations of perchlorate in tea was established. This method reached a good limit of detection of 0.0067 µmol L-1 (0.82 µg kg-1) in tea, which showed that the developed sensor has high sensitivity and could be used as a fast and simple technique for quantitative detection of perchlorate based on SERS technology.


Subject(s)
Cysteine , Silver , Dimethylpolysiloxanes , Humans , Perchlorates , Tea
13.
Food Chem ; 353: 129372, 2021 Aug 15.
Article in English | MEDLINE | ID: mdl-33725540

ABSTRACT

Matcha tea is rich in taste and bioactive constituents, quality evaluation of matcha tea is important to ensure flavor and efficacy. Near-infrared spectroscopy (NIR) in combination with variable selection algorithms was proposed as a fast and non-destructive method for the quality evaluation of matcha tea. Total polyphenols (TP), free amino acids (FAA), and polyphenols-to-amino acids ratio (TP/FAA) were assessed as the taste quality indicators. Successive projections algorithm (SPA), genetic algorithm (GA), and simulated annealing (SA) were subsequently developed from the synergy interval partial least squares (SiPLS). The overall results revealed that SiPLS-SPA and SiPLS-SA models combined with NIR exhibited higher predictive capabilities for the effective determination of TP, FAA and TP/FAA with correlation coefficient in the prediction set (Rp) of Rp > 0.97, Rp > 0.98 and Rp > 0.98 respectively. Therefore, this simple and efficient technique could be practically exploited for tea quality control assessment.


Subject(s)
Amino Acids/analysis , Polyphenols/analysis , Powders/chemistry , Taste , Tea/chemistry , Algorithms , Antioxidants/analysis , Least-Squares Analysis , Spectroscopy, Near-Infrared/methods
14.
Food Chem ; 350: 129141, 2021 Jul 15.
Article in English | MEDLINE | ID: mdl-33618087

ABSTRACT

This study aimed to assess the feasibility of identifying multiple chemical constituents in matcha using visible-near infrared hyperspectral imaging (VNIR-HSI) technology. Regions of interest (ROIs) were first defined in order to calculate the representative mean spectrum of each sample. Subsequently, the standard normal variate (SNV) method was applied to correct the characteristic spectra. Competitive adaptive reweighted sampling (CARS) and bootstrapping soft shrinkage (BOSS) were used to optimize the models. They were built based on partial least squares (PLS), creating two models referred to as CARS-PLS and BOSS-PLS. The BOSS-PLS models achieved best predictive accuracy, with coefficients of determination predicted to be 0.8077 for caffeine, 0.7098 for tea polyphenols (TPs), 0.7942 for free amino acids (FAAs), 0.8314 for the ratio of TPs to FAAs, and 0.8473 for chlorophyll. These findings highlight the potential of VNIR-HSI technology as a rapid and nondestructive alternative for simultaneous quantification of chemical constituents in matcha.


Subject(s)
Hyperspectral Imaging/methods , Infrared Rays , Tea/chemistry , Algorithms , Least-Squares Analysis , Polyphenols/analysis , Time Factors
15.
Food Chem ; 351: 129215, 2021 Jul 30.
Article in English | MEDLINE | ID: mdl-33639428

ABSTRACT

This study describes a turn-on upconversion fluorescence sensor for the detection of acrylamide (AA) based on glutathione (GSH) modulated turn-on fluorescence strategy. Polyethyleneimine-modified upconversion nanoparticles were first prepared by the hydrothermal method and then Rhodamine B derivative (RBD) was loaded on their surface through non-covalent bonding. The GSH coupled with RBD and strongly quenched the upconversion fluorescence via fluorescence resonance energy transfer. Upon addition of tris (2-carboxyethyl) phosphine, the thiol-ene Michael addition reaction between GSH and AA was efficiently catalyzed, resulted in the quenched fluorescence triggered on. Under the optimum conditions, a linear detection range from 0.1 to 104 µM was implemented for AA with a limit of detection of 0.68 nM and great sensitivity was observed. Importantly, the proposed sensor was evaluated for spiked potato chips samples with a satisfactory result in contrast to high-performance liquid chromatography, confirmed its applicability for the rapid detection of AA.


Subject(s)
Acrylamide/analysis , Acrylamide/chemistry , Fluorescence Resonance Energy Transfer/instrumentation , Food Analysis/methods , Solanum tuberosum/chemistry , Sulfhydryl Compounds/chemistry , Food Handling , Limit of Detection , Nanoparticles/chemistry
16.
Spectrochim Acta A Mol Biomol Spectrosc ; 246: 118994, 2021 Feb 05.
Article in English | MEDLINE | ID: mdl-33038862

ABSTRACT

In this study, a novel analytical approach is proposed for the identification of pesticide residues in tea by combining surface-enhanced Raman scattering (SERS) with a deep learning method one-dimensional convolutional neural network (1D CNN). First, a handheld Raman spectrometer was used for rapid on-site collection of SERS spectra. Second, the collected SERS spectra were augmented by a data augmentation strategy. Third, based on the augmented SERS spectra, the 1D CNN models were established on the cloud server, and then the trained 1D CNN models were used for subsequent pesticide residue identification analysis. In addition, to investigate the identification performance of the 1D CNN method, four conventional identification methods, including partial least square-discriminant analysis (PLS-DA), k-nearest neighbour (k-NN), support vector machine (SVM) and random forest (RF), were also developed on the basis of the augmented SERS spectra and applied for pesticide residue identification analysis. The comparative studies show that the 1D CNN method possesses better identification accuracy, stability and sensitivity than the other four conventional identification methods. In conclusion, the proposed novel analytical approach that exploits the advantages of SERS and a deep learning method (1D CNN) is a promising method for rapid on-site identification of pesticide residues in tea.


Subject(s)
Pesticide Residues , Spectrum Analysis, Raman , Least-Squares Analysis , Neural Networks, Computer , Pesticide Residues/analysis , Tea
17.
Spectrochim Acta A Mol Biomol Spectrosc ; 246: 118991, 2021 Feb 05.
Article in English | MEDLINE | ID: mdl-33068895

ABSTRACT

Tea quality is generally assessed through panel sensory evaluation, which requires elaborate sample preparation steps. Here, a novel and low-cost evaluation method of using smartphone imaging coupled with micro-near-infrared (NIR) spectrometer based on digital light processing is proposed to classify the quality grades of Keemun black tea. RGB color information was obtained by Image J software, eight texture characteristics, including scheme, contrast, dissimilarity, entropy, correlation, second moment and variance, and homogeneity were obtained by ENVI software based on co - occurrence method from smartphone images, and spectral data were preprocessed with standard normal variate. A principal component analysis (PCA)-support vector machine (SVM) model was established to analyze the color, texture, and spectral data. Low-level and middle-level fusion strategies were introduced for analyzing the fusion data. The results indicated that the accuracy of the SVM model on mid-level data fusion (100.00%, 94.29% for calibration set and prediction set, respectively) was higher than that obtained for separate color (97.14%, 88.57%), texture (84.29%, 60%), spectrum (74.29%, 68.57%) evaluation, or low-level data fusion (88.57%, 82.86%). The best SVM model yielded satisfactory performance with 94.29% accuracy for the prediction sets. These results suggested that smartphone imaging coupled with micro-NIR spectroscopy is an effective and low-cost tool for evaluating tea quality.


Subject(s)
Camellia sinensis , Tea , Smartphone , Spectroscopy, Near-Infrared , Support Vector Machine
18.
Food Chem ; 338: 127796, 2021 Feb 15.
Article in English | MEDLINE | ID: mdl-32805691

ABSTRACT

Trace detection of toxic chemicals in foodstuffs is of great concern in recent years. Surface-enhanced Raman scattering (SERS) has drawn significant attention in the monitoring of food safety due to its high sensitivity. This study synthesized signal optimized flower-like silver nanoparticle-(AgNP) with EF at 25 °C of 1.39 × 106 to extend the SERS application for pesticide sensing in foodstuffs. The synthesized AgNP was deployed as SERS based sensing platform to detect methomyl, acetamiprid-(AC) and 2,4-dichlorophenoxyacetic acid-(2,4-D) residue levels in green tea via solid-phase extraction. A linear correlation was twigged between the SERS signal and the concentration for methomyl, AC and 2,4-D with regression coefficient of 0.9974, 0.9956 and 0.9982 and limit of detection of 5.58 × 10-4, 1.88 × 10-4 and 4.72 × 10-3 µg/mL, respectively; the RSD value < 5% was recorded for accuracy and precision analysis suggesting that proposed method could be deployed for the monitoring of methomyl, AC and 2,4-D residue levels in green tea.


Subject(s)
Food Contamination/analysis , Metal Nanoparticles/chemistry , Pesticide Residues/analysis , Spectrum Analysis, Raman/methods , Tea/chemistry , 2,4-Dichlorophenoxyacetic Acid/analysis , Food Analysis/instrumentation , Food Analysis/methods , Methomyl/analysis , Neonicotinoids/analysis , Silver/chemistry , Solid Phase Extraction
19.
J Sci Food Agric ; 101(8): 3328-3335, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33222172

ABSTRACT

BACKGROUND: The acid value is an important indicator for evaluating the quality of edible oil during storage. This study employs a portable near-infrared (NIR) spectroscopy system to determine the acid value during edible oil storage. Four MPA-based variable selection methods, namely competitive adaptive reweighted sampling (CARS), the variable iterative space shrinkage approach (VISSA), iteratively variable subset optimization (IVSO), and bootstrapping soft shrinkage (BOSS) were introduced to optimize the preprocessed NIR spectra. Support vector machine (SVM) models based on characteristic spectra obtained by different selection methods were then established to achieve quantitative detection of the acid value during edible oil storage. RESULTS: The results revealed that, compared with the full-spectrum SVM model, the SVM models established by the characteristic wavelengths optimized by the variable selection methods based on the MPA strategy exhibit a significant improvement in complexity and generalization performance. Furthermore, compared with the CARS, VISSA, and IVSO methods, the BOSS method obtained the least number of characteristic wavelength variables, and the SVM model established based on the optimized features of this method exhibited the optimal prediction performance. The root mean square error of prediction (RMSEP) was 0.11 mg g-1, the coefficient of determination (Rp2) was 0.92 and the ratio performance deviation (RPD) was 2.82, respectively. CONCLUSION: The overall results indicate that the variable selection methods based on the MPA strategy can select more targeted characteristic variables. This has good application prospects in NIR spectra feature optimization. © 2020 Society of Chemical Industry.


Subject(s)
Acids/analysis , Food Analysis/methods , Plant Oils/analysis , Spectroscopy, Near-Infrared/methods , Algorithms , Food Storage , Support Vector Machine
20.
J Sci Food Agric ; 101(8): 3448-3456, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33270243

ABSTRACT

BACKGROUND: The edible oil storage period is one of the important indicators for evaluating the intrinsic quality of edible oil. The present study aimed to develop a portable electronic nose device for the qualitative identification of the edible oil storage period. First, four metal oxide semiconductor gas sensors, comprising TGS2600, TGS2611, TGS2620 and MQ138, were selected to prepare a sensor array to assemble a portable electronic nose device. Second, the homemade portable electronic nose device was used to obtain the odor change information of edible oil samples during different storage periods, and the sensor features were extracted. Finally, three pattern recognition methods, comprising linear discriminant analysis (LDA), K-nearest neighbors (KNN) and support vector machines (SVM), were compared to establish a qualitative identification model of the edible oil storage period. The input features and related parameters of the model were optimized by a five-fold cross-validation during the process of model establishment. RESULTS: The research results showed that the recognition performance of the non-linear SVM model was significantly better than that of the linear LDA and KNN models, especially in terms of generalization performance, which had a correct recognition rate of 100% when predicting independent samples in the prediction set. CONCLUSION: The overall results demonstrate that it is feasible to apply the homemade portable electronic nose device with the help of the appropriate pattern recognition methods to achieve the fast and efficient identification of the edible oil storage period, which provides an effective analysis tool for the quality detection of the edible oil storage. © 2020 Society of Chemical Industry.


Subject(s)
Electronic Nose , Food Analysis/methods , Plant Oils/chemistry , Discriminant Analysis , Food Analysis/instrumentation , Food Storage , Multivariate Analysis , Quality Control , Support Vector Machine
SELECTION OF CITATIONS
SEARCH DETAIL