Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 89
Filter
1.
Phytochemistry ; 214: 113789, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37482264

ABSTRACT

In botanical extracts, highly abundant constituents can mask or dilute the effects of other, and often, more relevant biologically active compounds. To facilitate the rational chemical and biological assessment of these natural products with wide usage in human health, we introduced the DESIGNER approach of Depleting and Enriching Selective Ingredients to Generate Normalized Extract Resources. The present study applied this concept to clinical Red Clover Extract (RCE) and combined phytochemical and biological methodology to help rationalize the utility of RCE supplements for symptom management in postmenopausal women. Previous work has demonstrated that RCE reduces estrogen detoxification pathways in breast cancer cells (MCF-7) and, thus, may serve to negatively affect estrogen metabolism-induced chemical carcinogenesis. Clinical RCE contains ca. 30% of biochanin A and formononetin, which potentially mask activities of less abundant compounds. These two isoflavonoids are aryl hydrocarbon receptor (AhR) agonists that activate P450 1A1, responsible for estrogen detoxification, and P450 1B1, producing genotoxic estrogen metabolites in female breast cells. Clinical RCE also contains the potent phytoestrogen, genistein, that downregulates P450 1A1, thereby reducing estrogen detoxification. To identify less abundant bioactive constituents, countercurrent separation (CCS) of a clinical RCE yielded selective lipophilic to hydrophilic metabolites in six enriched DESIGNER fractions (DFs 01-06). Unlike solid-phase chromatography, CCS prevented any potential loss of minor constituents or residual complexity (RC) and enabled the polarity-based enrichment of certain constituents. Systematic analysis of estrogen detoxification pathways (ERα-degradation, AhR activation, CYP1A1/CYP1B1 induction and activity) of the DFs uncovered masked bioactivity of minor/less abundant constituents including irilone. These data will allow the optimization of RCE with respect to estrogen detoxification properties. The DFs revealed distinct biological activities between less abundant bioactives. The present results can inspire future carefully designed extracts with phytochemical profiles that are optimized to increase in estrogen detoxification pathways and, thereby, promote resilience in women with high-risk for breast cancer. The DESIGNER approach helps to establish links between complex chemical makeup, botanical safety and possible efficacy parameters, yields candidate DFs for (pre)clinical studies, and reveals the contribution of minor phytoconstituents to the overall safety and bioactivity of botanicals, such as resilience promoting activities relevant to women's health.


Subject(s)
Breast Neoplasms , Isoflavones , Trifolium , Female , Humans , Trifolium/chemistry , Trifolium/metabolism , Isoflavones/pharmacology , Isoflavones/metabolism , Estrogens , Plant Extracts/pharmacology , Plant Extracts/chemistry , Breast Neoplasms/drug therapy
2.
Sci Rep ; 13(1): 8734, 2023 05 30.
Article in English | MEDLINE | ID: mdl-37253812

ABSTRACT

Breast cancer risk continues to increase post menopause. Anti-estrogen therapies are available to prevent postmenopausal breast cancer in high-risk women. However, their adverse effects have reduced acceptability and overall success in cancer prevention. Natural products such as hops (Humulus lupulus) and three pharmacopeial licorice (Glycyrrhiza) species have demonstrated estrogenic and chemopreventive properties, but little is known regarding their effects on aromatase expression and activity as well as pro-proliferation pathways in human breast tissue. We show that Gycyrrhiza inflata (GI) has the highest aromatase inhibition potency among these plant extracts. Moreover, phytoestrogens such as liquiritigenin which is common in all licorice species have potent aromatase inhibitory activity, which is further supported by computational docking of their structures in the binding pocket of aromatase. In addition, GI extract and liquiritigenin suppress aromatase expression in the breast tissue of high-risk postmenopausal women. Although liquiritigenin has estrogenic effects in vitro, with preferential activity through estrogen receptor (ER)-ß, it reduces estradiol-induced uterine growth in vivo. It downregulates RNA translation, protein biosynthesis, and metabolism in high-risk women's breast tissue. Finally, it reduces the rate of MCF-7 cell proliferation, with repeated dosing. Collectively, these data suggest that liquiritigenin has breast cancer prevention potential for high-risk postmenopausal women.


Subject(s)
Breast Neoplasms , Glycyrrhiza , Female , Humans , Breast Neoplasms/prevention & control , Breast Neoplasms/metabolism , Aromatase/metabolism , Aromatase Inhibitors/pharmacology , Estrogens/metabolism , Glycyrrhiza/chemistry , Estrogen Receptor beta/metabolism , Protein Biosynthesis
3.
J Nat Prod ; 86(2): 256-263, 2023 02 24.
Article in English | MEDLINE | ID: mdl-36744762

ABSTRACT

Monoterpenoids are integral to the chemical composition of the widely used adaptogenic dietary supplement Rhodiola rosea. The present study expands the chemical space and stereochemical information about these taxon-specific constituents from the isolation and characterization of five geraniol-derived glucosides, 1-5. While 1 and 2 exhibited almost identical NMR spectra and shared the same 2D structure ascribed to the 4-hydroxygeraniolglucoside previously described as rosiridin, the NMR-based Mosher ester method revealed the enantiomeric nature of their aglycone moieties. This marks the first report of enantiomeric aglycones among geraniol derivatives. These findings also resolve the long-standing dispute regarding the absolute configuration of rosiridin and congeneric C-4 hydroxylated geraniols and may help explain incongruent bioactivity reports of R. rosea extract. Moreover, the three previously undescribed geranioloids 3-5 were fully characterized by extensive spectroscopic analysis. Quantum mechanics-driven 1H iterative functionalized spin analysis (QM-HifSA) was performed for all isolates and provides detailed NMR spin parameters, with adequate decimal place precision, which enable the distinction of such close congeners exhibiting near identical NMR spectra with high specificity. The outcomes also reinforce the importance of reporting chemical shifts and coupling constants with adequate decimal place precision as a means of achieving specificity and reproducibility in structural analysis.


Subject(s)
Glucosides , Rhodiola , Glucosides/chemistry , Rhodiola/chemistry , Monoterpenes , Reproducibility of Results , Molecular Structure , Plant Extracts
4.
Drug Metab Dispos ; 51(2): 199-204, 2023 02.
Article in English | MEDLINE | ID: mdl-36328482

ABSTRACT

Licorice, the roots and rhizomes of Glycyrrhiza glabra L., has been used as a medicinal herb, herbal adjuvant, and flavoring agent since ancient times. Recently, licorice extracts have become popular as dietary supplements used by females to alleviate menopausal symptoms. Exposure to licorice products containing high levels of glycyrrhizic acid can cause hypokalemia, but independent from this effect, preclinical data indicate that licorice can inhibit certain cytochrome P450 (P450) enzymes. To evaluate whether clinically relevant pharmacokinetic interactions of licorice with P450 enzymes exist, a phase 1 clinical investigation was carried out using a licorice extract depleted in glycyrrhizic acid (content <1%) and a cocktail containing caffeine, tolbutamide, alprazolam, and dextromethorphan, which are probe substrates for the enzymes CYP1A2, CYP2C9, CYP3A4/5, and CYP2D6, respectively. The botanically authenticated and chemically standardized extract of roots from G. glabra was consumed by 14 healthy menopausal and postmenopausal female participants twice daily for 2 weeks. The pharmacokinetics of each probe drug were evaluated immediately before and after supplementation with the licorice extract. Comparison of the average areas under the time-concentration curves (AUCs) for each probe substrate in serum showed no significant changes from licorice consumption, whereas time to reach peak concentration for caffeine and elimination half-life for tolbutamide showed small changes. According to the US Food and Drug Administration guidance, which is based on changes in the AUC of each probe substrate drug, the investigated licorice extract should not cause any clinically relevant pharmacokinetic interactions with respect to CYP3A4/5, CYP2C9, CYP2D6, or CYP1A2. SIGNIFICANCE STATEMENT: Despite generally-recognized-as-safe status, the licorice species Glycyrrhiza glabra has been associated with some toxicity. Preclinical studies suggest that G. glabra might cause pharmacokinetic drug interactions by inhibiting several cytochrome P450 enzymes. This phase 1 clinical study addressed these concerns by evaluating clinically relevant effects with respect to CYP3A4/5, CYP2C9, CYP2D6, and CYP1A2. These results showed that a standardized G. glabra extract did not cause any clinically relevant pharmacokinetic drug interactions with four major cytochrome P450 enzymes.


Subject(s)
Cytochrome P-450 CYP1A2 , Glycyrrhiza , Humans , Female , Cytochrome P-450 CYP2D6 , Caffeine/pharmacokinetics , Cytochrome P-450 CYP3A , Tolbutamide , Glycyrrhizic Acid , Cytochrome P-450 CYP2C9 , Cytochrome P-450 Enzyme System , Glycyrrhiza/chemistry , Dietary Supplements
5.
J Nat Prod ; 85(3): 634-646, 2022 03 25.
Article in English | MEDLINE | ID: mdl-34990123

ABSTRACT

Much confusion exists about the chemical composition of widely sold Cannabis sativa products that utilize the cannabidiol (CBD) acronym and related terms such as "CBD oil", "CBD plus hemp oil", "full spectrum CBD", "broad spectrum CBD", and "cannabinoids". Their rational chemical and subsequent biological assessment requires both knowledge of the chemical complexity and the characterization of significant individual constituents. Applicable to hemp preparations in general, this study demonstrates how the combination of liquid-liquid-based separation techniques, NMR analysis, and quantum mechanical-based NMR interpretation facilitates the process of natural product composition analysis by allowing specific structural characterization and absolute quantitation of cannabinoids present in such products with a large dynamic range. Countercurrent separation of a commercial "CBD oil" yielded high-purity CBD plus a more polar cannabinoid fraction containing cannabigerol and cannabidivarin, as well as a less polar cannabinoid fraction containing cannabichromene, trans-Δ9-tetrahydrocannabinol, cis-Δ9-tetrahydrocannabinol, and cannabinol. Representatives of six cannabinoid classes were identified within a narrow range of polarity, which underscores the relevance of residual complexity in biomedical research on cannabinoids. Characterization of the individual components and their quantitation in mixed fractions were undertaken by TLC, HPLC, 1H (q)NMR spectroscopy, 1H iterative full spin analysis (HiFSA), 13C NMR, and 2D NMR. The developed workflow and resulting analytical data enhance the reproducible evaluation of "CBD et al." products, which inevitably represent complex mixtures of varying molecular populations, structures, abundances, and polarity features.


Subject(s)
Cannabidiol , Cannabinoids , Cannabis , Hallucinogens , Analgesics , Cannabinoids/chemistry , Cannabis/chemistry , Dronabinol , Plant Extracts/chemistry
6.
Fitoterapia ; 156: 105016, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34416305

ABSTRACT

The importance of Trifolium pratense L. as a dietary supplement and its use in traditional medicine prompted the preparation of a thorough metabolite profile. This included the identification and quantitation of principal constituents as well as low abundant metabolites that constitute the residual complexity (RC) of T. pratense bioactives. The purity and RC of isoflavonoid fractions from standardized red clover extract (RCE) was determined using an off-line combination of countercurrent separation (CCS) and two orthogonal analytical methodologies: quantitative 1H NMR spectroscopy with external calibration (EC-qHNMR) and LC-MS. A single-step hydrostatic CCS methodology (Centrifugal Partition Chromatography [CPC]) was developed that fractionated the isoflavonoids with a hexanes-ethyl acetate-methanol-water (HEMWat) 5.5/4.5/5/5, v/v solvent system (SS) into 75 fractions containing 3 flavonolignans, 2 isoflavonoid glycosides, as well as 17 isoflavonoids and related compounds. All metabolites were identified and quantified by qHNMR spectroscopy. The data led to the creation of a complete isoflavonoid profile to complement the biological evaluation. For example, fraction 69 afforded 90.5% w/w biochanin A (17), with 0.33% w/w of prunetin (16), and 0.76% w/w of maackiain (15) as residual components. Fraction 27 with 89.4% w/w formononetin (13) as the major component had, in addition, a residual complexity consisting of 3.37%, 0.73%, 0.68% w/w of pseudobaptigenin (11), kaempferol (10) and pratensein (8), respectively. Despite the relatively high resolving power of CPC, and not unexpectedly, the chromatographic fractions retained varying degrees of the original metabolomic diversity. Collectively, the extent of metabolomic diversity should be recognized and used to guide the development of isolation strategies, especially when generating samples for bioactivity evaluation. The simultaneous structural and quantitative characterization enabled by qNMR, supported by LC-MS measurements, enables the evaluation of a relatively large number of individual fractions and, thereby, advances both the chemical and biological evaluation of active principles in complex natural products.


Subject(s)
Flavonoids/analysis , Flavonoids/chemistry , Mass Spectrometry/methods , Plant Extracts/analysis , Plant Extracts/chemistry , Trifolium/anatomy & histology , Trifolium/chemistry , Medicine, Traditional , Plants, Medicinal/anatomy & histology , Plants, Medicinal/chemistry
7.
Planta Med ; 87(12-13): 998-1007, 2021 Oct.
Article in English | MEDLINE | ID: mdl-33975359

ABSTRACT

Prenyl moieties are commonly encountered in the natural products of terpenoid and mixed biosynthetic origin. The reactivity of unsaturated prenyl motifs is less recognized and shown here to affect the acyclic Rhodiola rosea monoterpene glycoside, kenposide A (8: ), which oxidizes readily on silica gel when exposed to air. The major degradation product mediated under these conditions was a new aldehyde, 9: . Exhibiting a shortened carbon skeleton formed through the breakdown of the terminal isopropenyl group, 9: is prone to acetalization in protic solvents. Further investigation of minor degradation products of both 8: and 8-prenylapigenin (8-PA, 12: ), a flavonoid with an ortho-prenyl substituent, revealed that the aldehyde formation was likely realized through epoxidation and subsequent cleavage at the prenyl olefinic bond. Employment of 1H NMR full spin analysis (HiFSA) achieved the assignment of all chemical shifts and coupling constants of the investigated terpenoids and facilitated the structural validation of the degradation product, 9: . This study indicates that prenylated compounds are generally susceptible to oxidative degradation, particularly in the presence of catalytic mediators, but also under physiological conditions. Such oxidative artifact/metabolite formation leads to a series of compounds with prenyl-derived (cyclic) partial structures that are analogous to species formed during Phase I metabolism in vivo. Phytochemical and pharmacological studies should take precautions or at least consider the impact of (unavoidable) exposure of prenyl-containing compounds to catalytic and/or oxidative conditions.


Subject(s)
Biological Products , Artifacts , Neoprene , Silica Gel
8.
J Nat Prod ; 84(4): 1078-1086, 2021 04 23.
Article in English | MEDLINE | ID: mdl-33830759

ABSTRACT

Two new diprenylated coumaric acid isomers (1a and 1b) and two known congeners, capillartemisin A (2) and B (3), were isolated from Artemisia scoparia as bioactive markers using bioactivity-guided HPLC fractionation. Their structures were determined by spectroscopic means, including 1D and 2D NMR methods and LC-MS, with their purity assessed by 1D 1H pure shift qNMR spectroscopic analysis. The bioactivity of compounds was evaluated by enhanced accumulation of lipids, as measured using Oil Red O staining, and by increased expression of several adipocyte marker genes, including adiponectin in 3T3-L1 adipocytes relative to untreated negative controls. Compared to the plant's 80% EtOH extract, these purified compounds showed significant but still weaker inhibition of TNFα-induced lipolysis in 3T3-L1 adipocytes. This suggests that additional bioactive substances are responsible for the multiple metabolically favorable effects on adipocytes observed with Artemisia scoparia extract.


Subject(s)
Adipocytes/drug effects , Adipogenesis/drug effects , Artemisia/chemistry , Coumaric Acids/pharmacology , 3T3-L1 Cells , Adiponectin/metabolism , Animals , Coumaric Acids/isolation & purification , Lipolysis/drug effects , Mice , Phytochemicals/isolation & purification , Phytochemicals/pharmacology , Prenylation , Tumor Necrosis Factor-alpha/metabolism
9.
Fitoterapia ; 152: 104878, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33757846

ABSTRACT

Optimal parameters for the auto-hydrolysis of (iso)flavone glycosides to aglycones in ground Trifolium pratense L. plant material were established as a "green" method for the production of a reproducible red clover extract (RCE). The process utilized 72-h fermentation in DI water at 25 and 37 °C. The aglycones obtained at 25 °C, as determined by UHPLC-UV and quantitative 1H NMR (qHNMR), increased significantly in the auto-hydrolyzed (ARCE) (6.2-6.7% w/w biochanin A 1, 6.1-9.9% formononetin 2) vs a control ethanol (ERCE) extract (0.24% 1, 0.26% 2). After macerating ARCE with 1:1 (v/v) diethyl ether/hexanes (ARCE-d/h), 1 and 2 increased to 13.1-16.7% and 14.9-18.4% w, respectively, through depletion of fatty components. The final extracts showed chemical profiles similar to that of a previous clinical RCE. Biological standardization revealed that the enriched ARCE-d/h extracts produced the strongest estrogenic activity in ERα positive endometrial cells (Ishikawa cells), followed by the precursor ARCE. The glycoside-rich ERCE showed no estrogenic activity. The estrogenicity of ARCE-d/h was similar to that of the clinical RCE. The lower potency of the ARCE compared to the prior clinical RCE indicated that substantial amounts of fatty acids/matter likely reduce the estrogenicity of crude hydrolyzed preparations. The in vitro dynamic residual complexity of the conversion of biochanin A to genistein was evaluated by LC-MS-MS. The outcomes help advance translational research with red clover and other (iso)flavone-rich botanicals by inspiring the preparation of (iso)flavone aglycone-enriched extracts for the exploration of new in vitro and ex vivo bioactivities that are unachievable with genuine, glycoside-containing extracts.


Subject(s)
Flavonoids/chemistry , Plant Extracts/chemistry , Trifolium/chemistry , Cell Line, Tumor , Chromatography, High Pressure Liquid , Humans , Hydrolysis , Phytochemicals/chemistry , Phytoestrogens/chemistry , Plant Components, Aerial/chemistry , Solvents
10.
J Nat Prod ; 84(3): 846-856, 2021 03 26.
Article in English | MEDLINE | ID: mdl-33710886

ABSTRACT

Curcuma longa (turmeric) has an extensive history of ethnomedical use for common ailments, and "curcumin"-containing dietary supplements (CDS) are a highly visible portion of today's self-medication market. Owing to raw material cost pressure, CDS products are affected by economically motivated, nefarious adulteration with synthetic curcumin ("syncumin"), possibly leading to unexpected toxicological issues due to "residual" impurities. Using a combination of targeted and untargeted (phyto)chemical analysis, this study investigated the botanical integrity of two commercial "turmeric" CDS with vitamin and other additives that were associated with reported clinical cases of hepatotoxicity. Analyzing multisolvent extracts of the CDS by 100% quantitative 1H NMR (qHNMR), alone and in combination with countercurrent separation (CCS), provided chemical fingerprints that allowed both the targeted identification and quantification of declared components and the untargeted recognition of adulteration. While confirming the presence of curcumin as a major constituent, the universal detection capability of NMR spectroscopy identification of significant residual impurities, including potentially toxic components. While the loss-free nature of CCS captured a wide polarity range of declared and unwanted chemical components, and also increased the dynamic range of the analysis, (q)HNMR determined their mass proportions and chemical constitutions. The results demonstrate that NMR spectroscopy can recognize undeclared constituents even if they represent only a fraction of the mass balance of a dietary supplement product. The chemical information associated with the missing 4.8% and 7.4% (m/m) in the two commercial samples, exhibiting an otherwise adequate curcumin content of 95.2% and 92.6%, respectively, pointed to a product integrity issue and adulteration with undeclared synthetic curcumin. Impurities from synthesis are most plausibly the cause of the observed adverse clinical effects. The study exemplifies how the simultaneously targeted and untargeted analytical principle of the 100% qHNMR method, performed with entry-level high-field instrumentation (400 MHz), can enhance the safety of dietary supplements by identifying adulterated, non-natural "natural" products.


Subject(s)
Curcuma/chemistry , Drug Contamination , Plant Extracts/analysis , Countercurrent Distribution , Curcumin/analysis , Dietary Supplements/analysis , Magnetic Resonance Spectroscopy , Plant Extracts/standards
11.
J Agric Food Chem ; 68(47): 13929-13939, 2020 Nov 25.
Article in English | MEDLINE | ID: mdl-33197178

ABSTRACT

Extracts of red clover (Trifolium pratense L.), containing estrogenic isoflavones like genistein and daidzein and the proestrogenic isoflavones formononetin and biochanin A, are used by women as dietary supplements for the management of menopausal symptoms. Although marketed as a safer alternative to hormone therapy, red clover isoflavones have been reported to inhibit some cytochrome P450 (CYP) enzymes involved in drug metabolism. To evaluate the potential for clinically relevant drug-red clover interactions, we tested a standardized red clover dietary supplement (120 mg isoflavones per day) for interactions with the pharmacokinetics of four FDA-approved drugs (caffeine, tolbutamide, dextromethorphan, and alprazolam) as probe substrates for the enzymes CYP1A2, CYP2C9, CYP2D6, and CYP3A4/5, respectively. Fifteen peri- and postmenopausal women completed pharmacokinetic studies at baseline and 2 weeks after consuming red clover. The averaged pharmacokinetic profiles of probe substrates in serum showed no significant alterations and no changes in the areas under the curve (AUC) over 96 h. Subgroup analysis based on the demographic characteristics (BMI, menopausal status, race, and age) also showed no differences in AUC for each probe substrate. Analysis of red clover isoflavones in serum showed primarily conjugated metabolites that explain, at least in part, the red clover pharmacokinetic safety profile.


Subject(s)
Isoflavones , Trifolium , Caffeine , Cytochrome P-450 Enzyme System , Dietary Supplements , Female , Humans
12.
J Agric Food Chem ; 68(47): 13541-13549, 2020 Nov 25.
Article in English | MEDLINE | ID: mdl-33175506

ABSTRACT

Proanthocyanidins (PACs) are near-ubiquitous and chemically complex metabolites, prototypical of higher plants. Their roles in food/feed/nutrition and ethnomedicine are widely recognized but poorly understood. With the analysis of evidence that underlies this challenge, this perspective identifies shortcomings in capturing and delineating PAC structures as key factors. While several groups have forwarded new representations, a consensus method that captures PAC structures concisely and offers high integrity for electronic storage is required to reduce confusion in this expansive field. The PAC block arrays (PACBAR) system fills this gap by providing precise and human- and machine-readable structural descriptors that capture PAC metabolomic structural diversity. PACBAR enables communication of PAC structures for the development of precise structure-activity relationships and will assist in advancing PAC research to the next level.


Subject(s)
Proanthocyanidins , Fruit , Humans , Plant Extracts
13.
J Nat Prod ; 83(11): 3287-3297, 2020 11 25.
Article in English | MEDLINE | ID: mdl-33151073

ABSTRACT

The present study elucidated the structures of three A-type tri- and tetrameric proanthocyanidins (PACs) isolated from Cinnamomum verum bark to the level of absolute configuration and determined their dental bioactivity using two therapeutically relevant bioassays. After selecting a PAC oligomer fraction via a biologically diverse bioassay-guided process, in tandem with centrifugal partition chromatography, phytochemical studies led to the isolation of PAC oligomers that represent the main bioactive principles of C. verum: two A-type tetrameric PACs, epicatechin-(2ß→O→7,4ß→8)-epicatechin-(4ß→6)-epicatechin-(2ß→O→7,4ß→8)-catechin (1) and parameritannin A1 (2), together with a trimer, cinnamtannin B1 (3). Structure determination of the underivatized proanthocyanidins utilized a combination of HRESIMS, ECD, 1D/2D NMR, and 1H iterative full spin analysis data and led to NMR-based evidence for the deduction of absolute configuration in constituent catechin and epicatechin monomeric units.


Subject(s)
Cinnamomum zeylanicum/chemistry , Dental Health Services , Plant Bark/chemistry , Polymers/chemistry , Proanthocyanidins/chemistry , Humans , Molecular Structure , Spectrum Analysis/methods
14.
Dent Mater ; 36(12): 1536-1543, 2020 12.
Article in English | MEDLINE | ID: mdl-33129510

ABSTRACT

OBJECTIVES: To develop a protocol for assessment of the bulk viscoelastic behavior of dentin extracellular matrix (ECM), and to assess relationships between induced collagen cross-linking and viscoelasticity of the dentin ECM. METHODS: Dentin ECM was treated with agents to induce exogenous collagen cross-linking: proanthocyanidins (PACs) from Vitis vinifera - VVe, PACs from Pinus massoniana - PMe, glutaraldehyde - (GA), or kept untreated (control). A dynamic mechanical strain sweep method was carried out in a 3-point bending submersion clamp at treatment; after protein destabilization with 4 M urea and after 7-day, 6-month, and 12-month incubation in simulated body fluid. Tan δ, storage (E'), loss (E"), and complex moduli (E*) were calculated and data were statistically analyzed using two-way ANOVA and post-hoc tests (α = 0.05). Chemical analysis of dentin ECM before and after protein destabilization was assessed with ATR-FTIR spectroscopy. RESULTS: Significant interactions between study factors (treatment vs. time points, p < 0.001) were found for all viscoelastic parameters. Despite a significant decrease in all moduli after destabilization, PAC-treated dentin remained statistically higher than control (p < 0.001), indicating permanent mechanical enhancement after biomodification. Covalently crosslinked, GA-treated dentin was unaffected by destabilization (p = 0.873) and showed the lowest damping capacity (tan δ) at all time points (p < 0.001). After 12 months, the damping capacity of PMe and VVe groups decreased significantly. Changes in all amide IR resonances revealed a partial chemical reversal of PAC-mediated biomodification. SIGNIFICANCE: Viscoelastic measurements and IR spectroscopy aid in elucidating the role of inter-molecular collagen cross-linking in the mechanical behavior of dentin ECM.


Subject(s)
Grape Seed Extract , Proanthocyanidins , Collagen , Dentin , Extracellular Matrix , Proanthocyanidins/pharmacology
15.
J Agric Food Chem ; 68(39): 10651-10663, 2020 Sep 30.
Article in English | MEDLINE | ID: mdl-32945668

ABSTRACT

Many botanicals used for women's health contain estrogenic (iso)flavonoids. The literature suggests that estrogen receptor beta (ERß) activity can counterbalance estrogen receptor alpha (ERα)-mediated proliferation, thus providing a better safety profile. A structure-activity relationship study of (iso)flavonoids was conducted to identify ERß-preferential structures, overall estrogenic activity, and ER subtype estrogenic activity of botanicals containing these (iso)flavonoids. Results showed that flavonoids with prenylation on C8 position increased estrogenic activity. C8-prenylated flavonoids with C2-C3 unsaturation resulted in increased ERß potency and selectivity [e.g., 8-prenylapigenin (8-PA), EC50 (ERß): 0.0035 ± 0.00040 µM], whereas 4'-methoxy or C3 hydroxy groups reduced activity [e.g., icaritin, EC50 (ERß): 1.7 ± 0.70 µM]. However, nonprenylated and C2-C3 unsaturated isoflavonoids showed increased ERß estrogenic activity [e.g., genistein, EC50 (ERß): 0.0022 ± 0.0004 µM]. Licorice (Glycyrrhiza inflata, [EC50 (ERα): 1.1 ± 0.20; (ERß): 0.60 ± 0.20 µg/mL], containing 8-PA, and red clover [EC50 (ERα): 1.8 ± 0.20; (ERß): 0.45 ± 0.10 µg/mL], with genistein, showed ERß-preferential activity as opposed to hops [EC50 (ERα): 0.030 ± 0.010; (ERß): 0.50 ± 0.050 µg/mL] and Epimedium sagittatum [EC50 (ERα): 3.2 ± 0.20; (ERß): 2.5 ± 0.090 µg/mL], containing 8-prenylnaringenin and icaritin, respectively. Botanicals with ERß-preferential flavonoids could plausibly contribute to ERß-protective benefits in menopausal women.


Subject(s)
Estrogen Receptor alpha/metabolism , Estrogen Receptor beta/metabolism , Flavonoids/chemistry , Flavonoids/metabolism , Plant Extracts/chemistry , Plant Extracts/metabolism , Epimedium/chemistry , Estrogen Receptor alpha/chemistry , Estrogen Receptor beta/chemistry , Estrogens/chemistry , Estrogens/metabolism , Glycyrrhiza/chemistry , Humans , Humulus/chemistry , Prenylation , Structure-Activity Relationship
16.
J Med Chem ; 63(21): 12137-12155, 2020 11 12.
Article in English | MEDLINE | ID: mdl-32804502

ABSTRACT

This Perspective of the published essential medicinal chemistry of cannabidiol (CBD) provides evidence that the popularization of CBD-fortified or CBD-labeled health products and CBD-associated health claims lacks a rigorous scientific foundation. CBD's reputation as a cure-all puts it in the same class as other "natural" panaceas, where valid ethnobotanicals are reduced to single, purportedly active ingredients. Such reductionist approaches oversimplify useful, chemically complex mixtures in an attempt to rationalize the commercial utility of natural compounds and exploit the "natural" label. Literature evidence associates CBD with certain semiubiquitous, broadly screened, primarily plant-based substances of undocumented purity that interfere with bioassays and have a low likelihood of becoming therapeutic agents. Widespread health challenges and pandemic crises such as SARS-CoV-2 create circumstances under which scientists must be particularly vigilant about healing claims that lack solid foundational data. Herein, we offer a critical review of the published medicinal chemistry properties of CBD, as well as precise definitions of CBD-containing substances and products, distilled to reveal the essential factors that impact its development as a therapeutic agent.


Subject(s)
Cannabidiol/pharmacology , Animals , Cannabidiol/pharmacokinetics , Cannabidiol/therapeutic use , Cannabidiol/toxicity , Chemistry, Pharmaceutical , Clinical Trials as Topic , Humans , Placebo Effect
17.
Fitoterapia ; 146: 104686, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32679162

ABSTRACT

The 1H NMR spectra of crude extracts from a total of 33 Actaea samples were acquired and analyzed for their species- and plant part-specific metabolomic characteristics by identifying fingerprint resonances via visual observation as well as a chemometric approach using principal component analysis (PCA). The main study subjects were the roots/rhizomes and aerial parts of three American species, Actaea racemosa (AR), Actaea podocarpa (AP) and Actaea cordifolia (AC). AP exhibited an already visually distinct chemical profile from those of the other two species. The species-characteristic resonances were identified as analytical chemotaxonomic markers. AR and AC exhibited visually similar 1H NMR spectral profiles that required statistical analysis for differentiation. Several characteristic peaks and peak patterns were identified for each group of samples. Together with the three American Actaea species, the characteristics of the 1H NMR spectra of Asian species are also discussed. A statistical analysis method using PCA was employed to provide the metabolomic profile for visually minor but analytically significant chemotaxonomic differences. PCA scores allowed differentiation between the three American Actaea species, as well as the ability to differentiate between the various plant parts (aboveground vs. roots/rhizomes).


Subject(s)
Actaea/chemistry , Actaea/classification , Metabolomics , Cimicifuga/chemistry , Magnetic Resonance Spectroscopy , North America , Phytochemicals/analysis , Species Specificity
18.
J Nat Prod ; 83(6): 1950-1959, 2020 06 26.
Article in English | MEDLINE | ID: mdl-32463230

ABSTRACT

NMR- and MS-guided metabolomic mining for new phytoconstituents from a widely used dietary supplement, Rhodiola rosea, yielded two new (+)-myrtenol glycosides, 1 and 2, and two new cuminol glycosides, 3 and 4, along with three known analogues, 5-7. The structures of the new compounds were determined by extensive spectroscopic data analysis. Quantum mechanics-driven 1H iterative full spin analysis (QM-HiFSA) decoded the spatial arrangement of the methyl groups in 1 and 2, as well as other features not recognizable by conventional methods, including higher order spin-coupling effects. Expanding applied HiFSA methodology to monoterpene glycosides advances the toolbox for stereochemical assignments, facilitates their structural dereplication, and provides a more definitive reference point for future phytochemical and biological studies of R. rosea as a resilience botanical. Application of a new NMR data analysis software package, CT, for QM-based iteration of NMR spectra is also discussed.


Subject(s)
Monoterpenes/chemistry , Rhodiola/chemistry , Glycosides/chemistry , Hydrolysis , Magnetic Resonance Spectroscopy , Mass Spectrometry , Molecular Structure , Plant Extracts/chemistry , Plant Roots/chemistry , Quantum Theory
19.
J Agric Food Chem ; 68(18): 5212-5220, 2020 May 06.
Article in English | MEDLINE | ID: mdl-32285669

ABSTRACT

Botanical dietary supplements produced from hops (Humulus lupulus) containing the chemopreventive compound xanthohumol and phytoestrogen 8-prenylnaringenin are used by women to manage menopausal symptoms. Because of the long half-lives of prenylated hop phenols and reports that they inhibit certain cytochrome P450 enzymes, a botanically authenticated and chemically standardized hop extract was tested for Phase I pharmacokinetic drug interactions. Sixteen peri- and postmenopausal women consumed the hop extract twice daily for 2 weeks, and the pharmacokinetics of tolbutamide, caffeine, dextromethorphan, and alprazolam were evaluated before and after supplementation as probe substrates for the enzymes CYP2C9, CYP1A2, CYP2D6, and CYP3A4/5, respectively. The observed area under the time-concentration curves were unaffected, except for alprazolam which decreased 7.6% (564.6 ± 46.1 h·µg/L pre-hop and 521.9 ± 36.1 h·µg/L post-hop; p-value 0.047), suggesting minor induction of CYP3A4/5. No enzyme inhibition was detected. According to FDA guidelines, this hop dietary supplement caused no clinically relevant pharmacokinetic interactions with respect to CYP2C9, CYP1A2, CYP2D6, or CYP3A4/5. The serum obtained after consumption of the hop extract was analyzed using ultra-high performance liquid chromatography-tandem mass spectrometry to confirm compliance. Abundant Phase II conjugates of the hop prenylated phenols were observed including monoglucuronides and monosulfates as well as previously unreported diglucuronides and sulfate-glucuronic acid diconjugates.


Subject(s)
Dietary Supplements/analysis , Herb-Drug Interactions , Humulus/chemistry , Perimenopause/drug effects , Plant Extracts/pharmacokinetics , Postmenopause/drug effects , Adult , Aged , Caffeine/pharmacokinetics , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism , Dextromethorphan/pharmacokinetics , Female , Humans , Middle Aged , Perimenopause/genetics , Perimenopause/metabolism , Plant Extracts/administration & dosage , Postmenopause/genetics , Postmenopause/metabolism , Tolbutamide/pharmacokinetics
20.
Fitoterapia ; 141: 104467, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31887327

ABSTRACT

The cycloartane triterpene content in the roots/rhizomes (RR) and aerial parts (PX) of Actaea racemosa (AR), A. podocarpa (AP), and A. cordifolia (AC) have been investigated by quantitative 1H NMR (qHNMR). Thereby, it was demonstrated that qHNMR represents a powerful methodology for the analysis of crude plant extracts as it does not rely on the rarely available identical reference triterpenes. Specifically, the presence of the characteristic C-19 cyclopropane (exo/endo) hydrogen signals made it possible to quantify the less common/not ubiquitously present group of cycloartane triterpenes, directly in extracts. As an example, ARPX and ARRR were shown to contain, 3.8-20.8% ± 8.2% and 7.2-19.3% ± 4.0% of cycloartane triterpenes, respectively. The cycloartane concentration in ACPX and ACRR was 7.5-8.7% ± 0.8% and 13.9-28.5% ± 7.3%, respectively, based on the weight of the extract. AP was shown to contain notably lower amounts of the cycloartane triterpenes as compared to AR and AC in the roots/rhizomes. The content for APPX and APRR was only 2.1-3.3% ± 0.7% and 1.1-4.0% ± 1.5%, respectively. In addition, an example is presented for the identification of specific cycloartanes as marker compounds for AR within crude extracts based on the same qHNMR spectra and 2D NMR methods.


Subject(s)
Cimicifuga/chemistry , Triterpenes/chemistry , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Antifungal Agents/chemistry , Antifungal Agents/pharmacology , Bacteria/drug effects , Candida albicans/drug effects , Magnetic Resonance Spectroscopy , Molecular Structure , Plant Extracts/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL